方程组——行图像求解(row picture)
将每个方程在三维空间中可用平面表示,其交点坐标即方程组的解。
方程组——列图像求解(column picture)
linear combinations of the columns
可将列向量在三维空间中可用向量表示,据矢量关系求解未知量。
对于任意的Ax=b一定存在解吗?A为3阶矩阵。(Do the linear cominations of the columns fill 3-D space?)
非也,若列向量均落于同一平面(2维),则矩阵无解。这种情形称为奇异,矩阵不可逆。
That would be a singular case. The matrix would be not invertible.
以此类推,对于n元方程组,我们可以得到n维空间中n个n阶列向量,以及右侧向量b,如若n阶列向量不独立,则方程解不存在。
本节重点在于线性组合的思想以及从向量与空间的角度理解矩阵
对于,
,
,