MIT-线性代数笔记1-方程组的几何解释

方程组——行图像求解(row picture)

\left\{\begin{matrix} 2x-y=0 \\ -x+2y-z=-1 \\ -3y+4z=4 \end{matrix}\right.

\begin{bmatrix} 2&-1 &0 \\ -1&2 &-1 \\ 0& -3 & 4 \end{bmatrix}\cdot \begin{bmatrix} x\\ y\\ z \end{bmatrix}=\begin{bmatrix} 0\\ -1\\ 4 \end{bmatrix}

将每个方程在三维空间中可用平面表示,其交点坐标即方程组的解。

方程组——列图像求解(column picture)

x\begin{bmatrix} 2\\ -1\\ 0 \end{bmatrix}+y\begin{bmatrix} -1\\ 2\\ -3 \end{bmatrix}+z\begin{bmatrix} 0\\ -1\\ 4 \end{bmatrix}=\begin{bmatrix} 0\\ -1\\ 4 \end{bmatrix}

linear combinations of the columns

 可将列向量在三维空间中可用向量表示,据矢量关系求解未知量。

对于任意的Ax=b一定存在解吗?A为3阶矩阵。(Do the linear cominations of the columns fill 3-D space?)

非也,若列向量均落于同一平面(2维),则矩阵无解。这种情形称为奇异,矩阵不可逆。

That would be a singular case. The matrix would be not invertible.

以此类推,对于n元方程组,我们可以得到n维空间中n个n阶列向量,以及右侧向量b,如若n阶列向量不独立,则方程解不存在。

本节重点在于线性组合的思想以及从向量与空间的角度理解矩阵

对于Ax=bA=\begin{bmatrix} a_{11} &a_{12} \\ a_{21}& a_{22} \end{bmatrix}x=\begin{bmatrix} x_1\\ x_2 \end{bmatrix}b=\begin{bmatrix} b_1\\ b_2 \end{bmatrix}

Ax=\begin{bmatrix} a_{11} &a_{12} \\ a_{21} & a_{22} \end{bmatrix}\cdot \begin{bmatrix} x_1\\ x_2 \end{bmatrix}=\begin{bmatrix} a_{11}\\ a_{21} \end{bmatrix}x_1+\begin{bmatrix} a_{12}\\ a_{22} \end{bmatrix}x_2=\begin{bmatrix} b_1\\ b_2 \end{bmatrix}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值