矩阵论——row picture&column picture

本文探讨了矩阵论中的行图(row picture)和列图(column picture)概念,如何利用它们解决线性方程组。行图适用于n equations, n unknowns的简单情况,通过画出每个方程的图像找交点求解。列图则关注向量的线性组合,尤其在b等于某一列向量时,解的求解更为直观。例如,对于3x3方程组,列图方法在某些情况下能直接得出解,而行图方法可能需要复杂的图像分析。总结来说,列图在处理线性组合问题时展现出优于行图的便利性。" 114121992,9352902,Kafka服务端网络架构深度解析:Acceptor与Processor线程,"['kafka', '网络', 'java', 'netty']
摘要由CSDN通过智能技术生成

对于一个n equations, n unknowns的方程组,Ax=b。
row picture:绘制每行对应的函数图像,找到它们的交点,即方程的解
column picture:即linear combination,找到每列向量,通过线性组合使其结果等于最右侧的向量。
Example
{ 2 x − y = 0 − x + 2 y = 3 \begin{dcases}2x-y=0\\-x+2y=3\end{dcases} { 2xy=0x+2y=3
row picture
在这里插入图片描述

column picture1
x [ 2 − 1 ] + y [ − 1 2 ] = [ 0 3 ] x\begin{bmatrix}2\\-1\end{bmatrix} +y\begin{bmatrix}-1\\2\end{bmatrix} =\begin{bmatrix}0\\3\end{bmatrix} x[

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值