Pytorch中的model.eval和model.train

        刚刚接触深度学习时,经常会在代码中看到model.train()和model.eval(),这里主要谈谈他们的区别和作用,以方便初学者更好的理解和掌握它。

        model.train()和model.eval()的区别主要在于Batch Normalization和Dropout两层。如果模型中有BN层(Batch Normalization)和 Dropout,需要在训练时添加model.train()。

        model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropout,model.train()是随机取一部分网络连接来训练更新参数。

        model.eval()是保证BN层能够用全部训练数据的均值和方差,同时网络的连接是不会根据dropout参数来随机屏蔽一部分连接的。

        另外,如果模型比较复杂,直接对模型model使用model.eval(),有可能出现dropout仍然生效的情况。这种情况下需要让每个包含dropout的执行节点的block变为eval()模式。比如:有一个名为net的网络其中有一名为decoder的层包含了dropout,则需要使用net.decoder.eval()使dropout失效。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

动力澎湃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值