Pytorch中的model. train()和model. eval()

训练完一个epoch,我们可能会生成模型来进行测试。在测试之前,需要加上model.eval(),否则的话,即使不训练,模型的权值也会改变。这是因为模型中有Batch Normalization层和Dropout层。

model.train()和model.eval()

我们知道,在pytorch中,模型有两种模式可以设置,一个是train模式、另一个是eval模式。

model.train():的作用是启用 Batch Normalization 和 Dropout。在train模式,Dropout层会按照设定的参数p设置保留激活单元的概率,如keep_prob=0.8,Batch Normalization层会继续计算数据的mean和var并进行更新。

model.eval():的作用是不启用 Batch Normalization 和 Dropout。在eval模式下,Dropout层会让所有的激活单元都通过,而Batch Normalization层会停止计算和更新mean和var,直接使用在训练阶段已经学出的mean和var值。 在使用model.eval()时就是将模型切换到测试模式,在这里,模型就不会像在训练模式下一样去更新权重。但是需要注意的是model.eval()不会影响各层的梯度计算行为,即会和训练模式一样进行梯度计算和存储,只是不进行反向传播。

# 针对BN层:
model.train() # 是保证BN层用每一批数据的均值和方差,即针对每个mini-batch的 ;
model.eval()  # 是保证BN用全部训练数据的均值和方差,即针对单张图片的;
# 针对Dropout层
model.train() # 随机取一部分网络连接来训练更新参数;
model.eval()  # 利用到了所有网络连接;

model.eval()和torch.no_grad()

在讲model.eval()时,其实还会提到torch.no_grad()。

torch.no_grad():用于停止autograd的计算,能起到加速和节省显存的作用,但是不会影响Dropout层和Batch Normalization层的行为。

如果不在意显存大小和计算时间的话,仅仅使用model.eval()已足够得到正确的validation的结果;而

with torch.zero_grad():则是更进一步加速和节省gpu空间。因为不用计算和存储梯度,从而可以计算得更快,也可以使用更大的batch来运行模型。

详细分析,可以看一下:【PyTorch】搞定网络训练中的model.train()和model.eval()模式 - 知乎

### 回答1: 在PyTorch中,`model.train()``model.eval()`是用于设置模型训练模式评估模式的方法。 当调用`model.train()`时,模型会进入训练模式。在训练模式下,模型会启用一些特定的功能,例如批量归一化Dropout等。这些功能在训练期间是有用的,但在评估期间不需要。 当调用`model.eval()`时,模型会进入评估模式。在评估模式下,模型会关闭训练期间的一些特定功能,以确保评估结果的一致性可靠性。 在训练期间,通常需要将模型设置为训练模式,以便在每个批次中更新模型参数。而在评估期间,需要将模型设置为评估模式,以便在测试集或验证集上进行评估,以便了解模型的性能。 需要注意的是,在调用`model.eval()`方法后,模型权重不会被修改。所以,如果需要继续训练模型,请确保在继续训练前调用`model.train()`方法,以将模型设置为训练模式。 ### 回答2: 在PyTorch中,model.train()model.eval()都是用来设置模型的训练模式的方法。 当调用model.train()方法时,模型的状态被设置为训练模式。这意味着模型会启用Batch NormalizationDropout等训练专用的层或操作,并且会自动计算梯度以便进行反向传播参数更新。在模型进行迭代训练时,应该使用train()方法来确保模型运行在正确的模式下。 相反,当调用model.eval()方法时,模型的状态被设置为评估模式。在评估模式中,模型会固定住Batch NormalizationDropout等训练专用的层或操作的值,以便进行模型的前向传播。这使得我们可以获得模型在评估数据上的输出。在测试、验证或推断模型时,应该使用eval()方法。 需要注意的是,当模型被调用时,它将自动在前向传播后续计算中切换到适当的模式。因此,在每个模型被调用前,我们通常只需要调用train()eval()方法一次即可。 综上所述,model.train()model.eval()方法在PyTorch中用于设置模型的训练模式评估模式,以确保模型在正确的状态下进行训练评估。 ### 回答3: 在PyTorch中,model.train()model.eval()是用来控制模型训练评估过程的方法。 model.train() 方法主要用于将模型切换到训练模式。在训练模式下,模型会启用 Dropout Batch Normalization 等操作的训练过程,以及训练数据的随机打乱。这种模式适合用于训练阶段,可以帮助模型更好地学习数据的特征模式。 model.eval() 方法主要用于将模型切换到评估模式。在评估模式下,模型会禁用 Dropout Batch Normalization 等操作的随机性,以保证结果的确定性。这种模式适合用于模型的验证测试阶段,可以保证模型的输出能够可靠地进行评估。 当我们进行模型的训练时,一般会通过在每个批次数据上调用model.train()切换到训练模式,并且在每个批次数据上进行前向计算反向传播来更新模型的权重。而在验证或测试阶段,会通过调用model.eval()切换到评估模式,并且只进行前向计算来生成模型的输出结果,以评估模型的性能。 总之,model.train()model.eval()主要用于控制模型的训练评估过程。通过切换模式,可以灵活地控制模型的操作,使其在不同的阶段达到最佳的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值