基于算术优化算法AOA优化LSTM的时间序列预测

本文探讨了如何使用算术优化算法(AOA)来优化LSTM网络的超参数,以改进时间序列预测的效果。通过将AOA应用到LSTM模型,建立了AOA-LSTM模型,实验证明这种优化能显著提高预测精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 0 引言

        基于LSTM进行时间序列预测方法简单有效。LSTM的出现为时间序列预测提供了一个新的研究方向。然而,与大部分网络模型一样,LSTM效果受其超参数设置的影响。为此,本文采用算术优化算法AOA优化LSTM网络超参数,建立AOA-LSTM模型 ,  实例验证表明 , AOA-LSTM 模型的预测效果明显提高。

1 原理

1.1 LSTM原理

        此处不做介绍!

1.2 算术优化算法

        算术优化算法(Arithmetic Optimization Algorithm, AOA)是 2021 年由 Abualigah 等人提出的一种新型元启发式算法,其灵感来源于数理知识中的四则混合运算。该算法利用算术中的乘除运算扩大算法全局搜索的分散性,利用加减运算提高算法局部搜索的精确性,由于该算法具有一定的求解
精度和较好的稳定性,已成功应用于实际工程优化问题中。

 1.3 AOA优化LSTM原理

        以最小化LSTM网络的误差为适应度函数,MPA的作用就是尽量去找一组最优超参数使得网络误差最小化。本文中LSTM的主要几个超参数分别是:学习率lr,batchsize,训练次数K,两个隐含层的节点数L1和L2。
 

2 代码实现

        基于MATLAB2020b,进行模型搭建与优化。数据结构为时间序列,我们采用前n个时刻的值为输入,n+1时刻 的值为输出这样来进行滚动建模。

2.1 LSTM结果

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值