0 引言
基于LSTM进行时间序列预测方法简单有效。LSTM的出现为时间序列预测提供了一个新的研究方向。然而,与大部分网络模型一样,LSTM效果受其超参数设置的影响。为此,本文采用算术优化算法AOA优化LSTM网络超参数,建立AOA-LSTM模型 , 实例验证表明 , AOA-LSTM 模型的预测效果明显提高。
1 原理
1.1 LSTM原理
此处不做介绍!
1.2 算术优化算法
算术优化算法(Arithmetic Optimization Algorithm, AOA)是 2021 年由 Abualigah 等人提出的一种新型元启发式算法,其灵感来源于数理知识中的四则混合运算。该算法利用算术中的乘除运算扩大算法全局搜索的分散性,利用加减运算提高算法局部搜索的精确性,由于该算法具有一定的求解
精度和较好的稳定性,已成功应用于实际工程优化问题中。
1.3 AOA优化LSTM原理
以最小化LSTM网络的误差为适应度函数,MPA的作用就是尽量去找一组最优超参数使得网络误差最小化。本文中LSTM的主要几个超参数分别是:学习率lr,batchsize,训练次数K,两个隐含层的节点数L1和L2。
2 代码实现
基于MATLAB2020b,进行模型搭建与优化。数据结构为时间序列,我们采用前n个时刻的值为输入,n+1时刻 的值为输出这样来进行滚动建模。