训练模型,生成权重
1 处理数据集,数据集必须是下面的格式
2 写一个yaml的数据集文件,格式如下
3 根据官网训练模型
pip install ultralytics
from ultralytics import YOLO
# Load a model
model = YOLO("yolo11n.pt")
# Train the model
train_results = model.train(
data="coco8.yaml", # path to dataset YAML
epochs=100, # number of training epochs
imgsz=640, # training image size
device="cpu", # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
)
# Evaluate model performance on the validation set
metrics = model.val()
# Perform object detection on an image
results = model("path/to/image.jpg")
results[0].show()
# Export the model to ONNX format
path = model.export(format="onnx") # return path to exported model
用tk写可视化界面,并用auto-py-to-exe转换成exe文件
1 用tk写可视化界面
2 转换为exe文件,以及使用虚拟环境避免exe文件过大的办法
直接打包exe文件会把所有的包打包进去,导致exe文件巨大并且运行缓慢,需要用虚拟环境打包exe
安装虚拟环境
pip install pipenv
进入虚拟环境
pipenv shell
安装yolo的库
pip install ultralytics
安装auto-py-to-exe
pip install auto-py-to-exe
运行
auto-py-to-exe
填入并导出即可
models.yolo