YOLO V11计数详细步骤:在自定义数据上训练,制作可视化界面,并打包成exe文件

 训练模型,生成权重

1 处理数据集,数据集必须是下面的格式

 2 写一个yaml的数据集文件,格式如下

 3 根据官网训练模型

pip install ultralytics
from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")

# Train the model
train_results = model.train(
    data="coco8.yaml",  # path to dataset YAML
    epochs=100,  # number of training epochs
    imgsz=640,  # training image size
    device="cpu",  # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
)

# Evaluate model performance on the validation set
metrics = model.val()

# Perform object detection on an image
results = model("path/to/image.jpg")
results[0].show()

# Export the model to ONNX format
path = model.export(format="onnx")  # return path to exported model

 用tk写可视化界面,并用auto-py-to-exe转换成exe文件

1 用tk写可视化界面

2 转换为exe文件,以及使用虚拟环境避免exe文件过大的办法

直接打包exe文件会把所有的包打包进去,导致exe文件巨大并且运行缓慢,需要用虚拟环境打包exe

安装虚拟环境

pip install pipenv

进入虚拟环境

pipenv shell

安装yolo的库

pip install ultralytics

安装auto-py-to-exe

pip install auto-py-to-exe

运行

auto-py-to-exe

填入并导出即可

models.yolo


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值