Fully Unsupervised Deepfake Video Detection via Enhanced Contrastive Learning

  • 来源:2024 TPAMI(CCF A)
  • 作者:Tong Qiao, Shichuang Xie, Yanli Chen, Florent Retraint, and Xiangyang Luo
  • 单位:Hangzhou Dianzi University, Hangzhou, China
  • Paper:https://ieeexplore.ieee.org/document/10411047
  • Code: https://github.com/bestalllen/Unsupervised_DF_Detection/

背景

  • 问题: 大多数的深度视频检测框架下的监督机制需要大量的样本与准确的标签训练。

    • 带有真实标签的训练样本数量不足
    • 训练数据被对手恶意毒害时(存在噪声标签)
  • 解决方法: 设计一个完全无监督的深度伪造检测器。

    • 设计了一个伪标记生成器来标记训练样本,其中传统的hand-crafted的特征用于表示真伪两种类型的样本。
    • 将带有伪标签的训练样本输入到所提出的增强对比学习器中,在对比损失的指导下
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AkanthaWang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值