- 来源:2024 TPAMI(CCF A)
- 作者:Tong Qiao, Shichuang Xie, Yanli Chen, Florent Retraint, and Xiangyang Luo∗
- 单位:Hangzhou Dianzi University, Hangzhou, China
- Paper:https://ieeexplore.ieee.org/document/10411047
- Code: https://github.com/bestalllen/Unsupervised_DF_Detection/
背景
-
问题: 大多数的深度视频检测框架下的监督机制需要大量的样本与准确的标签训练。
- 带有真实标签的训练样本数量不足
- 训练数据被对手恶意毒害时(存在噪声标签)
-
解决方法: 设计一个完全无监督的深度伪造检测器。
- 设计了一个伪标记生成器来标记训练样本,其中传统的hand-crafted的特征用于表示真伪两种类型的样本。
- 将带有伪标签的训练样本输入到所提出的增强对比学习器中,在对比损失的指导下