TPAMI 2024 | 通过增强对比学习实现完全无监督的深度伪造视频检测

题目:Fully Unsupervised Deepfake Video Detection Via Enhanced Contrastive Learning

通过增强对比学习实现完全无监督的深度伪造视频检测

作者:Tong Qiao; Shichuang Xie; Yanli Chen; Florent Retraint; Xiangyang Luo

源码链接: https://github.com/bestalllen/Unsupervised_DF_Detection/


摘要

如今,网络上广泛流传着大量的深伪视频,严重损害了公众的可信度和社会安全。尽管最近涌现出越来越多的可靠检测器来抵抗这种新兴的篡改技术,但仍有一些具有挑战性的问题需要解决,以至于大多数监督机制框架下的深伪视频检测器需要大量具有准确标签的样本进行训练。当具有真实标签的训练样本量不足或训练数据被对手恶意毒化时,监督分类器可能不能可靠地进行检测。为了解决这个棘手的问题,有人提议设计一个完全无监督的深伪检测器。特别是,在整个训练或测试过程中,我们不知道任何关于样本真实标签的信息。首先,我们新颖地设计了一个伪标签生成器来标记

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值