- 来源:2024 arXiv
- 作者:Wenxuan Wang1,2,3,∗ , Quan Sun1,∗ , Fan Zhang3 , Yepeng Tang4 , Jing Liu1,2 , Xinlong Wang3,†
- 单位:1 Institute of Automation, Chinese Academy of Sciences; 2 School of Artificial Intelligence, University of Chinese Academy of Sciences; 3 Beijing Academy of Artificial Intelligence; 4 Institute of Information Science, Beijing Jiaotong University
- Paper:https://arxiv.org/pdf/2407.20171
- Code: https://rubics-xuan.github.io/DIVA/
研究背景
对比语言-图像预训练(CLIP)在跨领域和跨模态的开放世界表示方面表现出色,已成为各种视觉和多模态任务的基础。
然而,最近的研究表明,CLIP在视觉方面存在严重的缺陷,例如几乎无法区分方向、数量、颜色、结构等。这些视觉缺陷也限制了建立在CLIP之上的多模态大型语言模型(MLLMs)的感知能力。主要原因可能是因为CLIP高度依赖于图像-文本数据对,无法仅在图像数据上实现预期效果。具体因素:
<