DIVA:Diffusion Feedback Helps CLIP See Better

  • 来源:2024 arXiv
  • 作者:Wenxuan Wang1,2,3,∗ , Quan Sun1,∗ , Fan Zhang3 , Yepeng Tang4 , Jing Liu1,2 , Xinlong Wang3,†
  • 单位:1 Institute of Automation, Chinese Academy of Sciences; 2 School of Artificial Intelligence, University of Chinese Academy of Sciences; 3 Beijing Academy of Artificial Intelligence; 4 Institute of Information Science, Beijing Jiaotong University
  • Paper:https://arxiv.org/pdf/2407.20171
  • Code: https://rubics-xuan.github.io/DIVA/

研究背景

对比语言-图像预训练(CLIP)在跨领域和跨模态的开放世界表示方面表现出色,已成为各种视觉和多模态任务的基础。

然而,最近的研究表明,CLIP在视觉方面存在严重的缺陷,例如几乎无法区分方向、数量、颜色、结构等。这些视觉缺陷也限制了建立在CLIP之上的多模态大型语言模型(MLLMs)的感知能力。主要原因可能是因为CLIP高度依赖于图像-文本数据对,无法仅在图像数据上实现预期效果。具体因素:

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AkanthaWang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值