RK3588 TNN CPU/OpenCL ResNet50推理测试
一、背景知识
1.1 TNN框架简介
TNN(Tencent Neural Network)是腾讯优图实验室推出的高性能神经网络推理框架,支持多种硬件平台(CPU/GPU/TPU/NPU)的异构计算。主要特点包括:
- 跨平台部署能力
- 支持FP32/FP16/INT8量化
- 提供模型压缩工具链
- 高效的内存管理机制
1.2 精度类型说明
- FP32:单精度浮点数(32位),最高精度但计算量最大
- FP16:半精度浮点数(16位),内存占用减少50%,计算速度提升
- INT8:8位整数量化,通过降低精度换取更高推理速度
二、性能数据
- 模型:resnet50 输入:[1,3.224,224 float32] 输出:[1,1000 float32]
精度类型 | CPU推理 | OpenCL推理 |
---|---|---|
FP16 | 104.066 ms MSE:0.00059 | 46.5272 ms MSE:0.00021 |
INT8 | 78.2465 ms MSE:0.00442 | 不支持 |
三、环境搭建详解
3.1 编译TNN框架
# 安装Python绑定依赖
pip3.10 install pybind11
# 克隆仓库并创建构建目录
git clone https://github.com/Tencent/TNN.git
cd TNN
rm build -rf
mkdir build && cd build
# 配置编译选项
cmake -DTNN_OPENCL_ENABLE=ON -DTNN_ARM82_ENABLE=ON \
-DTNN_ARM_ENABLE=ON -DTNN_QUANTIZATION_ENABLE=ON \
-DPYTHON_EXECUTABLE=/usr/bin/python3.10 \
-DCMAKE_INSTALL_PREFIX=`pwd`/_install -DDEBUG=0 \
-DTNN_CONVERTER_ENABLE=ON -DTNN_ONNX2TNN_ENABLE=ON ..
# 并行编译并安装
make -j4
make install
3.2 OpenCL环境配置
# 替换系统默认OpenCL驱动
mv /lib/aarch64-linux-gnu/libOpenCL.so.1 /lib/aarch64-linux-gnu/libOpenCL.so.1.bk
ln -s /usr/lib/aarch64-linux-gnu/libmali.so /lib/aarch64-linux-gnu/libOpenCL.so.1
# 安装开发工具链
sudo apt install -y opencl-headers
sudo apt install -y ocl-icd-libopencl1
sudo apt install -y ocl-icd-opencl-dev
sudo apt install -y clinfo
# 配置Vendor信息
mkdir -p /etc/OpenCL/vendors/
echo "libmali.so" > /etc/OpenCL/vendors/mali.icd
# 验证安装
clinfo
四、完整实现流程
4.1 准备测试图片
wget https://raw.githubusercontent.com/hi20240217/csdn_images/refs/heads/main/YellowLabradorLooking_new.jpg
4.2 生成ONNX
模型以及推理输入、输出
cat> resnet50.py<<-'EOF'
import requests
from PIL import Image
from io import BytesIO
import torchvision.transforms as transforms
import torch
import numpy as np
import torchvision.models as models
# 读取图片
image = Image.open("YellowLabradorLooking_new.jpg")
# 定义预处理流程
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# 应用预处理
img_t = preprocess(image)
input_tensor = torch.unsqueeze(img_t, 0).float()
input_np=input_tensor.numpy()
# 保存预处理好的输入,用于后面量化和精度对比
np.savetxt('resnet50_input.txt',input_np.reshape(-1), delimiter=' ', fmt='%.6f')
np.save('resnet50_input.npy',input_np)
# 加载预训练的ResNet50模型
model = models.resnet50(pretrained=True).float()
model.eval() # 将模型设为评估模式
# 执行前向推理
with torch.no_grad():
output = model(input_tensor).numpy()
# 保存推理的结果,用于后面对比精度
np.savetxt('resnet50_output.txt',output.reshape(-1), delimiter=' ', fmt='%.6f')
# 获取预测类别
predicted = np.argmax(output