【PLL】瞬态相位响应

实际上,PLL的瞬态行为总体上是非线性过程

 简化瞬态分析,将瞬态行为建立分为两部分:

  1. 大信号,频率采集
  2. 小信号,频率/相位跟踪

区分标准,是否发生周跳。

当PLL的初始频率在锁定范围之外时,PLL表现出具有周跳的大信号行为。

大信号区的频率捕获是一个非线性过程,这使得难以分析PLL的性能。一旦PLL进入锁定范围,便可使用线性模型简化瞬态分析

  • PLL频率捕获需要很长时间,实践中需要采样辅助电路。VCO大多被设计具有预调谐功能。
  • PFD=相位检测+频率捕获
  • 三阶或更高阶的2型PLL的瞬态特性与二阶2型PLL的瞬态特性相差不大

线性瞬态性能

  • 线性瞬态响应中的一个重要设计度量是静态相位误差
  • 环路类型比阶数更重要
    • 常用2型PLL

稳态相位响应

考虑PLL三种不同输入条件下,相位响应:

  • 相位阶跃
  • 频率阶跃
  • 频率斜坡

闭环传递函数:H(s)=\frac{\theta_o}{\theta_i}=\frac{G(s)}{1+G(s)}=\frac{K_dK_{vco}F(s)}{s+K_dK_{vco}F(s)}

误差传递函数:H_e(s)=\frac{\theta_e}{\theta_i}=1-H(s)=\frac{1}{1+G(s)}=\frac{s}{s+K_dK_{vco}F(s)}

时域稳态相位误差,根据拉普拉斯终值定理,t=\infty\rightarrow f=0

\lim_{t\to \infty}\theta_e(t)=\lim_{s\to 0}s\theta_e(s)=\lim_{s\to 0}\frac{s^2}{s+K_dK_{vco}F(s)}\theta_i(s)

 稳态相位响应误差推导
输入误差输出结果
相位阶跃\theta_i(t)=\Delta \theta\leftrightarrow \theta_i(s)=\frac{\Delta \theta}{s}\lim_{t \to \infty} \theta_e(s)=\lim_{s \to 0} \frac{s*\Delta \theta}{s+K_dK_{vco}F(s)}=0
频率阶跃\theta_i(t)=\Delta \omega t \leftrightarrow \theta_i(s)=\frac{\Delta \omega}{s^2}

\lim_{t \to \infty} \theta_e(s)=\lim_{s \to 0} \frac{\Delta \omega}{s+K_dK_{vco}F(s)}=\frac{\Delta \omega}{K_dK_{vco}F(0)}=\frac{\Delta \omega}{K_{DC}}

K_{DC}是DC直流环路增益

输入频率斜坡

\theta_i(t)=\frac{\Lambda t^2}{2} \leftrightarrow \theta_i(s)=\frac{\Lambda }{s^3}

频率随时间变化斜率为\Lambda

\lim_{t \to \infty} \theta_e(s)=\lim_{s \to 0} \frac{\Lambda /s}{s+K_dK_{vco}F(s)}=\frac{\Lambda }{K_dK_{vco}} \lim_{s \to 0} \frac{1}{s F(s)}

相位阶跃
  • 没有相位误差
频率阶跃
  • 只有当F(s)包含 1/s时候,直流增益无限大,则误差为零。
  • 当输入信号存在频率变化时候,1阶、2阶类型1锁相环,存在静态相位误差
  • 当输入信号的频率随时间变化不恒定时,PLL必须至少考虑类型2环路以实现锁相而没有静态相位误差
频率斜坡
  • 类型3 PLL来避免随着频率斜坡变化的静态相位误差
  • 类型2 PLL仅减轻静态相位误差,但不完全消除它

 静态相位误差总结
Type 1Type 2
相位阶跃00
频率阶跃\frac{\Delta \omega}{K_{DC}}0
频率斜坡\infty\frac{\Lambda }{K_dK_{vco}} \lim_{s \to 0} \frac{1}{s F(s)}
  • 频率步进实现零静态相位误差对频率产生系统具有重要意义。
  • 在基于PLL的频率合成器中,需要从单个参考源产生多个输出频率,而不会引起大的静态相位误差。
  • 在收发器系统中,通过通信信道在发射器和接收器之间存在频率偏移
  • 当使用基于PLL的时钟和数据恢复(CDR)电路时,在没有静态相位误差的情况下跟踪频率差对于数据重定时是重要的
  • 处理频率斜坡不是这些应用的主要问题。因此,在大多数商业应用中,第2类PLL已占主导地位 

瞬态相位响应

  • PLL瞬态响应的数学推导并不能给电路设计者带来很多启示。
  • 依靠瞬态仿真是直观了解PLL建立的可靠方法
  • 3阶PLL建立行为与2阶2型PLL相似,了解2阶2型PLL,可以更好了解3高阶PLL行为
1阶PLL瞬态模型

相位阶跃:\theta _e(s)=\frac{s}{s+K_dK_{vco}F(s)} \frac{\Delta \theta}{s}=\frac{\Delta \theta}{s+K} \leftrightarrow \theta _e=\Delta \theta e^{-Kt}

频率阶跃:\theta _e(s)=\frac{s}{s+K_dK_{vco}F(s)} \frac{\Delta \omega}{s^2}=\frac{\Delta \omega}{s(s+K)} \leftrightarrow \theta _e=\frac{\Delta \omega}{K} (1-e^{-Kt})

假设F(s)=1

2阶1型PLL

假设F(s)=\frac{1}{s+\omega_p},为了简单起见,没有零点

\theta _e(s)=\frac{s(s+2\zeta \omega _n)}{s^2+2 \zeta \omega _n s+\omega _n^2}\frac{\Delta \theta}{s}=\frac{(s+2 \zeta \omega _n) \Delta \theta}{s^2+2 \zeta \omega _n s+\omega _n^2}

\theta _e(s)=\frac{s(s+2\zeta \omega _n)}{s^2+2 \zeta \omega _n s+\omega _n^2}\frac{\Delta \omega}{s^2}=\frac{(s+2 \zeta \omega _n) \Delta \omega}{s(s^2+2 \zeta \omega _n s+\omega _n^2)}

假设\zeta <1,则

\theta _e(t)=\Delta \theta e^{-\zeta \omega _n t}[cos \omega_n(1-\zeta^2)^{1/2}t+\frac{\zeta}{(1-\zeta ^2)^{1/2}}sin \omega _n (1-\zeta^2)^{1/2}t]

建立时间

尽管瞬态分析很复杂,但利用一阶近似可以大大简化锁定范围内的稳定行为的分析

对于环路增益为K的1阶PLL,瞬态频率 f(t)

f(t)=f_1+\Delta f_{step}(1-e^{-Kt})

 

  • 初始频率:f_1
  • 想要的频率:f_2
  • 频率步进:\Delta f_{step}=f_2-f_1
  • 稳定后的频率:f_s =f_1+\Delta f_{step}(1-e^{-Kt_s})
  • 频率误差:f_\varepsilon =f_2-f_s
  • 建立时间t_s =\frac{1}{K} ln \frac{\Delta f_{step}}{f_{\varepsilon }}

2阶2型PLL受3个因素影响,\zeta,\omega _n,K,且K=2 \zeta \omega _n

(a)固定\omega _n

  • 变化 ζ,过冲变化大,锁定时间变化不大

(b)固定K

  • ζ>1,随着K的增大,锁定时间明显变大
  • 欠阻尼环路,有利于快速锁定
  • 建立时间主要由积分路径的慢频率采集决定
  • ​​​​​​​过阻尼环路情况下,2阶2型PLL积分路径,使建立时间滞后

  • 环路增益K,比 固有频率wn更重要
  • 在ζ确定情况下,对环路增益归一化很重要

实际应用中,ζ在0.35~0.5,欠阻尼2阶2型PLL建立时间近似为:

t_s=\frac{1}{\zeta \omega_n}ln(\frac{\Delta f_{step}}{f_{\varepsilon } \sqrt{1-\zeta^2}})

在现代PLL设计中,建立时间不仅取决于环路动态特性,还取决于VCO中心频率的数字校准

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值