AI Interpretability原理与代码实例讲解
1. 背景介绍
1.1 问题的由来
随着人工智能系统在各领域的广泛应用,其决策过程的透明度和可解释性日益受到关注。传统的"黑箱"模型虽然在某些任务上表现出色,但由于其内在机理的不可解释性,常常遭到质疑和不信任。因此,提高AI系统的可解释性(Interpretability)成为了一个迫切的需求。
可解释性不仅有助于提高人们对AI系统的信任度,更重要的是,它有助于发现模型中潜在的偏差和缺陷,从而促进模型的持续改进。此外,在一些高风险领域(如医疗、金融等),可解释性也是一个法律和道德要求,以确保AI系统的决策过程是透明和可审计的。
1.2 研究现状
近年来,AI可解释性领域取得了长足进展,涌现出多种解释技术和框架。一些常见的方法包括:
- 特征重要性分析(Feature Importance)
- 局部解释模型(Local Interpretable Model-Agnostic Explanations, LIME)
- 形象化解释(Saliency Maps)
- 层次化解释(Layer-wise Relevance Propagation, LRP)
- 原型解释(Prototype Explanatio