Python数据分析-数据职业的薪水分析预测

一、研究背景

随着大数据和人工智能技术的迅猛发展,数据职业在全球范围内迅速崛起,成为当前就业市场上的热点领域。数据分析师、数据科学家、机器学习工程师等职业需求量大增,吸引了大量求职者的关注。然而,不同数据职业之间的薪酬差异,以及影响薪酬的关键因素,仍然是求职者和雇主共同关心的问题。

在现代社会,薪酬不仅反映了员工的劳动价值和企业对员工的认可程度,还在一定程度上影响着职业选择和职业发展路径。因此,了解数据职业的薪酬情况及其影响因素,对求职者在职业规划和求职过程中具有重要参考价值。同时,企业在招聘和薪酬制定过程中,也可以通过数据分析,制定更加科学合理的薪酬策略,吸引和留住高素质人才。

本研究旨在利用Python数据分析技术,对数据职业的薪酬数据进行探索性分析和预测建模,找出影响薪酬的关键因素,并建立薪酬预测模型,为求职者和雇主提供科学依据和决策支持。

二、研究意义

  1. 为求职者提供职业规划参考:通过对数据职业薪酬数据的分析,求职者可以了解不同职业的薪酬水平及其影响因素,从而在职业选择和规划中做出更加明智的决策,选择更适合自身发展的职业路径。

  2. 帮助企业制定薪酬策略:企业可以利用本研究的成果,了解市场上不同数据职业的薪酬水平和关键影响因素,从而制定更加科学合理的薪酬策略,吸引和留住高素质的数据人才,提高企业竞争力。

  3. 促进薪酬公平和透明:通过公开的薪酬分析和预测,求职者和雇主可以对市场薪酬水平有更清晰的认知,避免因信息不对称而造成的薪酬不公平现象,促进就业市场的公平和透明。

  4. 为教育和培训机构提供指导:教育和培训机构可以根据市场需求和薪酬水平,调整课程设置和培训内容,为社会培养更多符合市场需求的数据人才,提升教育和培训的有效性。

三、实证分析

代码和数据

该数据可用于薪资预测、趋势分析和人力资源分析。

列描述符 FIRST NAME:数据专业人员的名字 (String)

LAST NAME:数据专业人员的姓氏 (String)

SEX:数据专业人员的性别(字符串:“F”表示女性,“M”表示男性)

DOJ(加入日期):数据专业人员加入公司的日期(月/日/年格式的日期)

CURRENT DATE:数据的当前日期或快照日期(MM/DD/YYYY 格式的日期)

职称:数据专业人员的工作角色或职称(字符串:例如,分析师、高级分析师、经理)

AGE:数据专业人员的年龄(整数)

薪资:数据专业人员的年薪(浮动)

UNIT:数据专业人员工作的业务单位或部门(字符串:例如 IT、财务、营销)

LEAVES USED:数据专业人员使用的叶子数(整数)

LEAVES REMAINING:数据专业人员的剩余叶子数(整数)

评级:数据专业人员的绩效评级(浮动)

过去的经验:加入当前公司之前的多年工作经验(Float)

该数据集是根据一家公司的内部人力资源记录得到的。 每条记录都代表一个独特的数据专业人员,具有从他们的工作历史中收集的各种属性。 数据跨度从 2009 年到 2016 年,捕获截至 2016 年 1 月 7 日的快照。 数据组织: 数据按加入日期(DOJ)按时间顺序排列。 每一行代表一个单独的数据专业人员。 包括各种属性,例如名称、部门和绩效评级,以便进行全面分析。

首先读取基本的数据分析包并且读取和查看数据

import pandas as pd
import matplot
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值