Dijkstra算法

Dijkstra算法是一种用于解决最短路径问题的图算法,由荷兰计算机科学家Edsger W. Dijkstra在1956年提出。它可以找到两个节点之间的最短路径,但仅适用于没有负权边的有向图或无向图。


Dijkstra算法的原理

1. 创建一个节点集合,用于存储已经确定最短路径的节点,将起始节点添加到该集合中。 
2. 初始化一个距离集合,用于存储起始节点到其他节点的距离。起始节点的距离为0,其他节点的距离初值为正无穷。
3. 当节点集合不为空时,重复以下步骤:
   - 从距离集合中选取一个距离最小的节点,将其从距离集合中删除,并加入节点集合。
   - 对于该节点的每个邻居节点,计算从起始节点经过当前节点到达邻居节点的距离。如果该距离小于目前距离集合中的距离,则更新距离集合中的距离。
4. 当节点集合为空时,算法结束。此时,距离集合中存储的距离即为最短路径的结果。

通过这种方式,Dijkstra算法能够确定起始节点到其他节点的最短路径,并计算出每个节点的最短距离。这种算法的时间复杂度为O(V^2),其中V是节点数。

Dijkstra算法的核心思想

Dijkstra算法的核心思想是通过每一轮迭代,不断确定起始节点到当前节点的最短路径,并更新每个节点的最短距离。同时,通过选取距离最小的节点,保证每一轮加入节点集合的节点都是距离起始节点最近的节点。

使用一个优先级队列(如最小堆)来选择距离集合中距离最小的节点,可以提高算法的效率。每次从优先级队列中取出距离最小的节点,将其加入节点集合,并更新与该节点直接相连的节点的最短距离。这样,就可以在O(logV)的时间内选取距离最小的节点,从而将Dijkstra算法的时间复杂度优化为O((V+E)logV),其中E是边的数量。

总结起来,Dijkstra算法通过不断选取距离最小的节点,逐步确定起始节点到其他节点的最短路径,并计算出每个节点的最短距离。这使得Dijkstra算法成为一种常用且有效的最短路径算法,广泛应用于网络路由、地图导航等领域。

Dijkstra算法的关键在于不断更新节点的最短距离,并选择最小的距离进行扩展,直到所有节点都被加入节点集合为止。这样就能保证每个节点被访问时,它的最短距离已经被确定下来。

需要注意的是,Dijkstra算法要求图中没有负权边。因为它利用了每次扩展节点时的最小距离,如果存在负权边,可能会导致出现环路,破坏了最短路径的定义。

最后,通过将前驱节点集合中记录的路径逆序输出,我们可以得到从起始节点到目标节点的最短路径。

总结来说,Dijkstra算法通过不断选择距离最小的节点,并更新节点距离及前驱节点,来找到起始节点到其他节点的最短路径。它是一种广泛使用的最短路径算法,但要求图中没有负权边。在实际应用中,可以利用优先级队列来提高算法的效率。

在实际应用中,Dijkstra算法还可以扩展为解决单源最短路径问题和全源最短路径问题。

对于单源最短路径问题,即给定一个起始节点,需要计算出该节点到图中所有其他节点的最短路径。在使用Dijkstra算法解决单源最短路径问题时,只需将起始节点到其他节点的距离初始化为正无穷,然后进行Dijkstra算法的步骤即可。

而对于全源最短路径问题,即给定图中所有节点,需要计算出任意两个节点之间的最短路径。在使用Dijkstra算法解决全源最短路径问题时,需要对每个节点都执行一次Dijkstra算法,分别得到该节点到其他节点的最短路径。

需要注意的是,在面对大规模图和较多节点时,Dijkstra算法可能会变得低效,因为它需要计算每个节点到所有其他节点的最短路径。在这种情况下,可以考虑使用其他最短路径算法,如A*算法、Bellman-Ford算法或Floyd-Warshall算法,来提高计算效率。

总结来说,Dijkstra算法是一种解决最短路径问题的图算法,通过不断选择距离最小的节点,并更新最短路径和前驱节点,来找到起始节点到其他节点的最短路径。它可用于解决单源最短路径问题和全源最短路径问题,但要求图中没有负权边。在实际应用中,可以根据具体需求选择合适的最短路径算法。

例子

#include <iostream>
#include <vector>
#include <queue>
#include <limits>

using namespace std;

// 定义无穷大表示不可达
const int INF = numeric_limits<int>::max();

// 图的邻接表表示
typedef pair<int, int> Edge; // <邻居节点, 边权重>
typedef vector<vector<Edge>> Graph; // 邻接表表示的图

vector<int> Dijkstra(const Graph& graph, int start) {
    int n = graph.size(); // 图中节点的个数

    vector<int> dist(n, INF); // 用于存储起始节点到各个节点的最短距离
    dist[start] = 0; // 起始节点到自身的距离为0

    // 定义优先队列,按照节点到起始节点的最短距离排序
    priority_queue<Edge, vector<Edge>, greater<Edge>> pq;
    pq.push({0, start});

    while (!pq.empty()) {
        int u = pq.top().second; // 当前最短路径节点
        int d = pq.top().first; // 当前最短路径值
        pq.pop();

        // 如果当前节点已经被访问过,则跳过
        if (d > dist[u]) {
            continue;
        }

        // 遍历当前节点的邻居节点
        for (const Edge& edge : graph[u]) {
            int v = edge.first; // 邻居节点
            int weight = edge.second; // 边权重

            // 如果经过当前节点到达邻居节点的距离更短,则更新最短距离并加入队列
            if (dist[u] + weight < dist[v]) {
                dist[v] = dist[u] + weight;
                pq.push({dist[v], v});
            }
        }
    }

    return dist;
}

int main() {
    int n = 5; // 图中节点的个数
    Graph graph(n); // 创建一个空的图

    // 添加边和边权重
    graph[0].push_back({1, 4});
    graph[0].push_back({2, 1});
    graph[1].push_back({4, 4});
    graph[1].push_back({3, 1});
    graph[2].push_back({1, 2});
    graph[2].push_back({3, 5});
    graph[3].push_back({4, 3});

    int start = 0; // 起始节点

    // 运行Dijkstra算法,计算起始节点到所有其他节点的最短距离
    vector<int> shortestDist = Dijkstra(graph, start);

    // 输出结果
    cout << "Shortest distances from node " << start << " to all other nodes:\n";
    for (int i = 0; i < n; ++i) {
        cout << "Node " << i << ": " << shortestDist[i] << endl;
    }

    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

七七喝椰奶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值