【本地部署】构建AI问答知识库:一站式指南

本地部署AI问答知识库

介绍

在当今信息爆炸的时代,我们常常需要处理大量的信息并且寻找特定的答案。AI问答知识库是一种基于人工智能技术的系统,旨在通过理解自然语言问题并从存储的知识库中提取相关信息,以准确、快速地回答用户的问题。这种技术不仅在搜索引擎、智能助手和客户服务领域有着广泛的应用,还在医疗、金融、教育等各个领域展现了巨大的潜力。

本地部署优势

虽然云端提供了便捷的AI服务,但有时在本地部署AI问答知识库可能更为合适。首先,本地部署可以提供更高的隐私和安全性,特别是对于一些敏感的数据或机密信息而言。其次,本地部署可以更好地控制资源和成本,避免了对云服务的依赖。此外,本地部署还可以提供更快的响应速度和更好的定制化,满足特定业务需求。

技术架构

img

技术选型

采用FastGpt来实现本地知识库

FastGPT 的能力与优势

FastGPT 是一个基于 LLM 大语言模型的知识库问答系统,提供开箱即用的数据处理、模型调用等能力。同时可以通过 Flow 可视化进行工作流编排,从而实现复杂的问答场景!

  1. 项目开源

    FastGPT 遵循附加条件 Apache License 2.0 开源协议,你可以 Fork 之后进行二次开发和发布。FastGPT 社区版将保留核心功能,商业版仅在社区版基础上使用 API 的形式进行扩展,不影响学习使用。

  2. 独特的 QA 结构

    针对客服问答场景设计的 QA 结构,提高在大量数据场景中的问答准确性。

  3. 可视化工作流

    通过 Flow 模块展示了从问题输入到模型输出的完整流程,便于调试和设计复杂流程。

  4. 无限扩展

    基于 API 进行扩展,无需修改 FastGPT 源码,也可快速接入现有的程序中。

  5. 便于调试

    提供搜索测试、引用修改、完整对话预览等多种调试途径。

  6. 支持多种模型

    支持 GPT、Claude、文心一言等多种 LLM 模型,未来也将支持自定义的向量模型。

功能清单

1. 专属 AI 客服

通过导入文档或已有问答对进行训练,让 AI 模型能根据你的文档以交互式对话方式回答问题。

img

2. 简单易用的可视化界面

FastGPT 采用直观的可视化界面设计,为各种应用场景提供了丰富实用的功能。通过简洁易懂的操作步骤,可以轻松完成 AI 客服的创建和训练流程。

img

3. 自动数据预处理

提供手动输入、直接分段、LLM 自动处理和 CSV 等多种数据导入途径,其中“直接分段”支持通过 PDF、WORD、Markdown 和 CSV 文档内容作为上下文。FastGPT 会自动对文本数据进行预处理、向量化和 QA 分割,节省手动训练时间,提升效能。

img

4. 工作流编排

基于 Flow 模块的工作流编排,可以帮助你设计更加复杂的问答流程。例如查询数据库、查询库存、预约实验室等。

img

5. 强大的 API 集成

FastGPT 对外的 API 接口对齐了 OpenAI 官方接口,可以直接接入现有的 GPT 应用,也可以轻松集成到企业微信、公众号、飞书等平台。

img

准备工作

服务器配置要求

image-20240310174135029.png 服务器需要安装好docker环境
在这里插入图片描述

部署过程

部署架构图

img

部署说明

安装 Docker 和 docker-compose
# 安装 Docker
curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun
systemctl enable --now docker
# 安装 docker-compose
curl -L https://github.com/docker/compose/releases/download/2.20.3/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose
chmod +x /usr/local/bin/docker-compose
# 验证安装
docker -v
docker-compose -v
# 如失效,自行百度~

给docker中的容器创建一个共用网络

docker network create my-network

安装m3e矢量模型
docker run -d --name m3e   --network my-network -p 3030:6008 registry.cn-hangzhou.aliyuncs.com/fastgpt_docker/m3e-large-api

安装one-api
docker run --name one-api   --network my-network -d --restart always -p 3200:3000 -e TZ=Asia/Shanghai -v /home/ubuntu/data/one-api:/data justsong/one-api

添加阿里通义千问模型和M3E模型

配置m3e矢量模型

默认密钥为:sk-aaabbbcccdddeeefffggghhhiiijjjkkk

image-20240310175226404.png

image-20240310174950822.png

image-20240310175123375.png

安装FastGpt

1.创建目录并下载 docker-compose.yml

mkdir fastgpt
cd fastgpt
curl -O https://raw.githubusercontent.com/labring/FastGPT/main/files/deploy/fastgpt/docker-compose.yml
curl -O https://raw.githubusercontent.com/labring/FastGPT/main/projects/app/data/config.json

2.修改 docker-compose.yml 的环境变量

修改docker-compose.yml中的OPENAI_BASE_URL(API 接口的地址,需要加/v1)和CHAT_API_KEY(API 接口的凭证)。

使用 OneAPI 的话,OPENAI_BASE_URL=OneAPI访问地址/v1;CHAT_API_KEY=令牌

image-20240310175250984.png

3.修改config.json 配置文本模型和矢量模型

image-20240310175315206.png

3.启动容器

在 docker-compose.yml 同级目录下执行

# 进入项目目录
cd 项目目录
# 启动容器
docker-compose pull
docker-compose up -d

4.初始化 Mongo 副本集(4.6.8以前可忽略)

# 查看 mongo 容器是否正常运行
docker ps
# 进入容器
docker exec -it mongo bash

# 连接数据库(这里要填Mongo的用户名和密码)
mongo -u myusername -p mypassword --authenticationDatabase admin

# 初始化副本集。如果需要外网访问,mongo:27017 可以改成 ip:27017。但是需要同时修改 FastGPT 连接的参数(MONGODB_URI=mongodb://myname:mypassword@mongo:27017/fastgpt?authSource=admin => MONGODB_URI=mongodb://myname:mypassword@ip:27017/fastgpt?authSource=admin)
rs.initiate({
  _id: "rs0",
  members: [
    { _id: 0, host: "mongo:27017" }
  ]
})
# 检查状态。如果提示 rs0 状态,则代表运行成功
rs.status()

image-20240310175327735.png

使用案例

部署好后,访问http://localhost:3001/

image-20240310175451190.png

1.添加知识库

image-20240310180137802.png

image-20240310180249969.png

image-20240310180344542.png

image-20240310180159100.png

image-20240310180242581.png image-20240310180432745.png

2.创建应用

image-20240310180448756.png

image-20240310180556498.png

image-20240310180520322.png

image-20240310180544747.png

3.聊天测试

image-20240310180744048.png

系统集成

fastgpt支持接入到其它系统里

image-20240310180829549.png

image-20240310180807650.png

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值