AI与爬虫技术的完美结合:数据提取的新篇章,当大模型助力爬虫技术,无敌了家人们!

你是否曾想过,如果有一个工具,能够理解你的意图并自动执行复杂的网络数据抓取任务,那会怎样?ScrapeGraphAI[1] 就是这样一个工具,它利用最新的人工智能技术,让数据提取变得前所未有地简单。

ScrapeGraphAI 是一个用于网络抓取 Python 库,它使用大语言模型(LLM)和直接图为网站、文档和 XML 文件创建抓取管道。只需说出您想要提取哪些信息,它就会为您完成!

工具特点

  • 简单易用:只需输入 API 密钥,您就可以在几秒钟内抓取数千个网页!

  • 开发便捷:你只需要实现几行代码,工作就完成了。

  • 专注业务:有了这个库,您可以节省数小时的时间,因为您只需要设置项目,人工智能就会为您完成一切。

快速开始

在线示例

1.官方 Streamlit

https://scrapegraph-ai-demo.streamlit.app/

2.Google Colab

https://colab.research.google.com/drive/1sEZBonBMGP44CtO6GQTwAlL0BGJXjtfd

本地安装

使用 pip 安装 scrapegraphai:

pip install scrapegraphai   

此外,您还需要安装 Playwright[2] 抓取客户端渲染(由 JavaScript 动态渲染)的网页:

playwright install   

Playwright 是一个强大的 Python 库,仅用一个 API 即可自动执行 Chromium、Firefox、WebKit 等主流浏览器自动化操作。

使用示例

ScrapeGraphAI 支持通过 API 使用不同的 LLM,例如 OpenAI、Groq、Azure 和 Gemini,或使用 Ollama 的本地模型。

ScrapeGraphAI 内置了 3 种网页爬取流程:

  • SmartScraperGraph:仅需要用户提示词和输入源的单页抓取工具;

  • SearchGraph:多页抓取工具,从搜索引擎的前 n 个搜索结果中提取信息;

  • SpeechGraph:单页抓取工具,从网站提取信息并生成音频文件。

示例一:使用 Ollama API 提取信息

from scrapegraphai.graphs import SmartScraperGraph      graph_config = {       "llm": {           "model": "ollama/mistral",           "temperature": 0,           "format": "json",  # Ollama needs the format to be specified explicitly           "base_url": "http://localhost:11434",  # set Ollama URL       },       "embeddings": {           "model": "ollama/nomic-embed-text",           "base_url": "http://localhost:11434",  # set Ollama URL       }   }      smart_scraper_graph = SmartScraperGraph(       prompt="List me all the articles",       # also accepts a string with the already downloaded HTML code       source="https://perinim.github.io/projects",       config=graph_config   )      result = smart_scraper_graph.run()   print(result)   

示例二:使用 ChatGPT API 提取信息

from scrapegraphai.graphs import SmartScraperGraph   OPENAI_API_KEY = "YOUR_API_KEY"      graph_config = {       "llm": {           "api_key": OPENAI_API_KEY,           "model": "gpt-3.5-turbo",       },   }      smart_scraper_graph = SmartScraperGraph(       prompt="List me all the articles",       # also accepts a string with the already downloaded HTML code       source="https://perinim.github.io/projects",       config=graph_config   )      result = smart_scraper_graph.run()   print(result)   

示例三:使用 Groq API 提取信息

from scrapegraphai.graphs import SmartScraperGraph   from scrapegraphai.utils import prettify_exec_info      groq_key = os.getenv("GROQ_APIKEY")      graph_config = {       "llm": {           "model": "groq/gemma-7b-it",           "api_key": groq_key,           "temperature": 0       },       "embeddings": {           "model": "ollama/nomic-embed-text",           "temperature": 0,           "base_url": "http://localhost:11434",        },       "headless": False   }      smart_scraper_graph = SmartScraperGraph(       prompt="List me all the projects with their description and the author.",       source="https://perinim.github.io/projects",       config=graph_config   )      result = smart_scraper_graph.run()   print(result)   

示例四:使用 Gemini API 提取信息

from scrapegraphai.graphs import SmartScraperGraph   GOOGLE_APIKEY = "YOUR_API_KEY"      # Define the configuration for the graph   graph_config = {       "llm": {           "api_key": GOOGLE_APIKEY,           "model": "gemini-pro",       },   }      # Create the SmartScraperGraph instance   smart_scraper_graph = SmartScraperGraph(       prompt="List me all the articles",       source="https://perinim.github.io/projects",       config=graph_config   )      result = smart_scraper_graph.run()   print(result)   

示例五、使用 Docker 提取信息

注意:使用本地模型之前记得创建 docker 容器!

docker-compose up -d   docker exec -it ollama ollama pull stablelm-zephyr   

您可以使用 Ollama 上可用的模型或您自己的模型来代替 stablelm-zephyr

from scrapegraphai.graphs import SmartScraperGraph。      graph_config = {       "llm": {           "model": "ollama/mistral",           "temperature": 0,           "format": "json",  # Ollama needs the format to be specified explicitly           # "model_tokens": 2000, # set context length arbitrarily       },   }      smart_scraper_graph = SmartScraperGraph(       prompt="List me all the articles",       # also accepts a string with the already downloaded HTML code       source="https://perinim.github.io/projects",         config=graph_config   )      result = smart_scraper_graph.run()   print(result)   

随着 AI 技术的不断发展,将会为传统工具带来很大的机遇和挑战,后续会不断涌现出更多智能化的工具。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### Maxent 模型及其在机器学习和自然语言处理中的应用 Maxent 模型(最大熵模型)是一种重要的概率建模方法,在自然语言处理 (NLP) 和其他领域中得到了广泛应用。该模型的核心思想是在满足约束条件下,选择具有最大熵的概率分布作为最优解[^1]。 #### Maxent 的基本原理 为了更好地理解和使用 Maxent 模型,可以参考一些基础理论资源。例如,对于信息熵的理解以及其在条件熵、交叉熵等方面的扩展,可以通过专门的文章深入研究[^4]。这些文章不仅介绍了熵的基础定义,还讨论了如何通过最大化熵来构建更合理的预测模型。 #### 实践教程推荐 以下是几个适合初学者和中级学习者的实践教程方向: 1. **官方文档源码分析** - Maxent 是一个开源项目,因此可以直接查阅其 GitHub 页面或官方网站获取详细的开发指南和技术细节。 2. **学术论文解读** - 对于希望深入了解卷积神经网络架构如何匹配自然语言句子的研究者来说,可以阅读相关文献[^3]。这类材料通常会涉及深度学习技术传统统计学方法之间的对比。 3. **Python 编程实战** - 使用 Python 可以轻松实现 NLP 中的各种算法,包括但不限于词频统计、分词、句法解析等操作[^2]。在此基础上进一步探索 maxent 模型的具体编码过程将会非常有益。 4. **R 语言生态建模案例** - 如果兴趣偏向生态环境保护方面,则 R 软件包 biomod2 提供了一个很好的切入点[^5]。它允许用户利用多种机器学习算法来进行物种分布模拟等工作。 #### 示例代码片段展示 下面给出一段简单的 python 实现最大熵分类器的例子: ```python from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import LogisticRegression as LR import numpy as np def train_maxent(X_train, y_train): vectorizer = CountVectorizer() X_vec = vectorizer.fit_transform(X_train) clf = LR(penalty='l2', solver="liblinear", multi_class="ovr") clf.fit(X_vec, y_train) return lambda text:clf.predict(vectorizer.transform([text])) # Example usage: X = ["I love programming.", "This is a test."] y = ['positive','neutral'] predictor = train_maxent(X,y) print(predictor("Another sentence to classify")) ``` 此脚本展示了如何借助 scikit-learn 库完成文本特征提取并训练二元逻辑回归模型的过程,实际上这也相当于实现了最简化版本的最大熵分类器。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值