无监督学习、自监督学习、有监督学习、SFT监督微调介绍

无监督学习(Unsupervised Learning)

  • 解释:无监督学习是一种机器学习的方法,其中模型从未标记的数据中学习。也就是说,给模型提供输入数据,但没有给出相应的期望输出或标签。模型需要自己发现数据中的模式、结构或关联。

  • 技术术语:

    • “未标记的数据”:指的是没有附带额外信息(如类别标签或值)的数据。

    • “模式、结构或关联”:无监督学习的目标通常是识别数据中的群集、异常值、降维或某种内在结构。

自监督学习(Self-Supervised Learning)

  • 解释:自监督学习是无监督学习的一个子集,它利用输入数据本身的结构或特性来生成标签,然后利用这些标签进行有监督的学习。换句话说,模型首先从未标记的数据中生成自己的标签或监督信号,然后使用这些标签来训练。

  • 技术术语:

    • “生成标签”:自监督学习算法会设计任务,使得模型能够从输入数据中提取有用的信息,并将这些信息用作训练时的标签。

    • “监督信号”:指的是用于指导模型学习的标签或信息。在自监督学习中,这些监督信号是由模型自己从数据中生成的。

有监督学习(Supervised Learning)

  • 解释:有监督学习是一种机器学习的方法,其中模型从标记的数据中学习。也就是说,给模型提供输入数据以及相应的期望输出或标签。模型的目标是学会将输入映射到正确的输出。

  • 技术术语:

    • “标记的数据”:指的是附带额外信息(如类别标签或具体值)的数据。

    • “输入映射到输出”:有监督学习的目标是训练模型,使其能够根据给定的输入数据预测出正确的输出或标签。

这些学习范式各有其优缺点,并适用于不同类型的问题和数据集。例如,当有大量未标记的数据但标记数据很少时,无监督或自监督学习可能更为合适;而当有充足的标记数据时,有监督学习通常能够提供更好的性能。

SFT监督微调

SFT监督微调基本概念

SFT(Supervised Fine-Tuning)监督微调是指在源数据集上预训练一个神经网络模型,即源模型。然后创建一个新的神经网络模型,即目标模型。目标模型复制了源模型上除了输出层外的所有模型设计及其参数。这些模型参数包含了源数据集上学习到的知识,且这些知识同样适用于目标数据集。源模型的输出层与源数据集的标签紧密相关,因此在目标模型中不予采用。微调时,为目标模型添加一个输出大小为目标数据集类别个数的输出层,并随机初始化该层的模型参数。在目标数据集上训练目标模型时,将从头训练到输出层,其余层的参数都基于源模型的参数微调得到。

监督微调的步骤

具体来说,监督式微调包括以下几个步骤:

  • 预训练: 首先在一个大规模的数据集上训练一个深度学习模型,例如使用自监督学习或者无监督学习算法进行预训练;
  • 微调: 使用目标任务的训练集对预训练模型进行微调。通常,只有预训练模型中的一部分层被微调,例如只微调模型的最后几层或者某些中间层。在微调过程中,通过反向传播算法对模型进行优化,使得模型在目标任务上表现更好;
  • 评估: 使用目标任务的测试集对微调后的模型进行评估,得到模型在目标任务上的性能指标。

监督微调的特点

监督式微调能够利用预训练模型的参数和结构,避免从头开始训练模型,从而加速模型的训练过程,并且能够提高模型在目标任务上的表现。监督式微调在计算机视觉、自然语言处理等领域中得到了广泛应用。然而监督也存在一些缺点。首先,需要大量的标注数据用于目标任务的微调,如果标注数据不足,可能会导致微调后的模型表现不佳。其次,由于预训练模型的参数和结构对微调后的模型性能有很大影响,因此选择合适的预训练模型也很重要。

 SFT监督微调的主流方法

随着技术的发展,涌现出越来越多的大语言模型,且模型参数越来越多,比如 GPT3 已经达到 1750 亿的参数量,传统的监督微调方法已经不再能适用现阶段的大语言模型。为了解决微调参数量太多的问题,同时也要保证微调效果,急需研发出参数高效的微调方法(Parameter Efficient Fine Tuning, PEFT)。目前,已经涌现出不少参数高效的微调方法,其中主流的方法包括:

  • LoRA
  • P-tuning v2
  • Freeze

具体对比描述可参考:人工智能大语言模型微调技术 - 知乎

  • 24
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
在大模型有监督训练(SFT)过程中,数据多样性指的是训练数据集中的样本具有丰富的变化和多样的特征。数据多样性是一种衡量训练数据集中多个样本之间差异性的度量。 数据多样性对于SFT的有效训练非常重要。它能够帮助模型学习到更有效的特征表示,从而提高模型的泛化能力和性能。 首先,数据多样性能够促使模型学习到更丰富的特征。如果训练数据集中的样本都非常相似,模型可能会过度拟合这些特定数据,而无法捕捉到更广泛的特征变化。相反,如果训练数据集中包含了各种不同类型和变化幅度的样本,模型将更有可能学习到更通用的特征表示。 其次,数据多样性可以帮助模型更好地应对未见过的数据。如果模型只在单一模式或特定领域的样本上进行训练,它可能无法处理在训练期间未曾见过的样本。通过训练数据集中引入多样性,模型将更具有鲁棒性和泛化能力,能够更好地适应新的、未知的数据。 最后,数据多样性有助于增强模型的鲁棒性。因为在真实应用中,输入数据的多样性变化往往是不可避免的。通过在训练过程中暴露模型于各种样本,模型可以更好地应对各种输入变化,提高模型的鲁棒性和稳定性。 总之,在大模型有监督训练中,数据多样性是指训练数据集中样本具有丰富的变化和多样的特征。它对于模型的特征学习、泛化能力和应对未知数据具有重要作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rs勿忘初心

您的鼓励将是我的最大创动原动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值