最新Qwen 2.5-Max+Cline 组合, 真能替代 DeepSeek V3 和 R1 吗?实测见真章!

1. 背景

近年来,AI 代码编辑器如 Cursor 和 Windsurf 在国内市场颇受欢迎,而开源方案 Cline + DeepSeek V3 也随着 DeepSeek V3 和 R1 的崛起逐步被开发者接受。然而,2025 年1月29日,阿里正式推出了 Qwen 2.5-Max,这款模型在各大评测基准上展现了全球领先的能力。其编程实战能力是否能匹敌 DeepSeek V3、GPT-4o 甚至 Claude 3.5 Sonnet?本文将重点探讨 Qwen 2.5-Max 在实际开发中的表现。

2. Qwen 2.5-Max 2025.1.29 版简介

Qwen 2.5-Max 在多个权威基准测试(如 MMLU-Pro、LiveCodeBench、LiveBench 和 Arena-Hard)上取得了优异成绩,展现了强大的知识理解能力、编程能力以及人类偏好对齐能力。在多个评测中,其性能比肩 Claude 3.5 Sonnet,并几乎全面超越 GPT-4o、DeepSeek V3 及 Llama-3.1-405B。

此外,Qwen 2.5-Max 现已上架百炼平台,开发者可以通过 API 调用使用,且在 2025 年 5 月 18 日前,每个账户可免费获得 100 万 token 额度。

Qwen在所有测试中的成绩全面领先

3. Cline + Qwen 2.5 的配置方法

3.1 AI 代码编辑器 Cline 简介

Cline 是一款开源的 AI 代码助手,能够无缝集成到 VSCode 之中,为开发者提供代码补全、错误检查、重构建议等功能。Cline 通过 Model Context Protocol(MCP)支持第三方大模型,原生支持 Claude 3.5,但也可以轻松集成 Qwen 2.5,使得开发者能够在本地安全高效地利用其编程能力。

3.2 5.18 日前百万免费 Token

Qwen 2.5-Max 现已在百炼平台提供 API 服务,开发者可调用 qwen-max-2025-01-25 模型,并在 2025 年 5 月 18 日前获得 100 万免费 token 额度。

3.3 Cline 中的配置方法
  1. 安装 Cline 插件
  • 在 VSCode 中搜索并安装 Cline 插件。
  1. 配置 API
  • 设置 API 提供者为 OpenAI Compatible。

  • API URL 设为 https://dashscope.aliyuncs.com/compatible-mode/v1

  • 输入百炼平台获取的 API Key。

  • Model ID 设为 qwen-max-latest

  1. 自定义指令
  • 需要中文回答时,可在自定义指令中输入:“请使用中文回答”。
  1. 集成 Cline
  • 配置完成后,Cline 便可通过 CLI 直接调用 Qwen 2.5,提供代码补全与交互能力。

4. 实战评测

任务描述

我们测试 Qwen 2.5 的代码生成能力,要求其使用 Vue、Vite 和 Tailwind CSS 创建一个 Web UI。界面要求如下:

  • 标题:Patron Search

  • 搜索栏:包括输入框(输入 Patron No.)和搜索按钮

  • 状态标签:AC、IN、SU、BA

  • 折叠面板:包括 Member Detail、Active on floor status、Tier Change、Point Bucket、Gaming Details、Itinerary、Offers、Comments

目标界面

提示词

任务:按照以下界面描述,使用 vue+vite+tailwind css 创建一个 web UI。这个 Web UI 可以用来搜索顾客的信息,搜到顾客信息以后点击各个部分对应的按钮可以看到顾客各个部分的详细情况。  
界面描述:  
图中的内容是一个顾客信息搜索界面,界面标题为“Patron Search”。界面包含以下元素:  
  
1. 搜索栏  
  - 标签:Patron NO.  
  - 输入框:用于输入顾客编号  
  - 搜索按钮:按钮上有放大镜图标  
  
2. 状态标签  
  - 四个状态标签:AC、IN、SU、BA  
  
3. 信息折叠面板  
  - 八个可折叠的面板,右侧有三角形图标展开/折叠  
  - 面板标题:Member Detail, Active on floor status, Tier Change, Point Bucket, Gaming Details, Itinerary, Offers, Comments  

实际表现

Qwen 2.5-Max 完成了框架的搭建,首次生成的界面虽然与目标需求有偏差,需要继续调整。与 DeepSeek V3 相比,其代码生成质量略逊一筹,但仍然是当前开源生态中值得一试的第二款可用大模型。

对比一下 Deepseek V3在去年年底的评测中首次生成的界面:

5. 总结

Qwen 2.5-Max 作为阿里通义最新发布的大模型,在编程能力上展现了极高的潜力。虽然在代码生成精度上略逊于 DeepSeek V3,但结合 Cline 的集成方案,Qwen 2.5 仍然是一个值得开发者尝试的开源 AI 代码助手。考虑到 100 万免费 token 的政策,开发者可以利用这段时间深入体验 Qwen 2.5-Max 的实际表现,为未来的 AI 编程工具选型提供更多选择。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### Qwen 2.5-1.5B 模型介绍 Qwen 2.5-1.5B 是一款开源的大规模语言模型,具有强大的自然语言处理能力。该模型适用于多种应用场景,包括但不限于对话生成、文本摘要、机器翻译等任务。此版本的模型参数量为 1.5B,在保持高性能的同时降低了部署成本资源消耗[^4]。 对于希望尝试或研究这款模型的研究人员开发者来说,可以通过指定 `model_id` 来获取对应的下载链接: ```bash model_id: Qwen/Qwen2.5-1.5B-Instruct ``` 下载地址位于 Hugging Face 平台上,并且无需翻越网络限制即可访问,遵循特定的开源协议。 ### 使用方法 为了方便用户快速上手并利用 Qwen 2.5-1.5B 进行开发工作,官方提供了详细的文档支持材料。以下是基本的操作指南: #### 安装依赖库 首先需要安装必要的 Python 库,推荐使用 pip 工具完成环境配置: ```bash pip install transformers torch ``` #### 加载预训练模型 接着可以加载已经训练好的 Qwen 2.5-1.5B 模型实例: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-1.5B-Instruct") model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-1.5B-Instruct") ``` #### 输入提示词进行交互 准备好之后就可以向模型输入一段文字作为提示词,从而获得相应的回复内容: ```python input_text = "你好,世界" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` 以上就是有关于如何引入以及调用 Qwen 2.5-1.5B 的简单说明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值