什么是LLM大模型?为什么DeepSeek能火?看这一篇就够了!

前言

自从2022年12月 ChatGPT 横空面世以来,AI 领域获得了十足的关注和资本,其实AI的概念在早些年也火过一波,本轮 AI 热潮相比于之前的 AI,最大的区别在于:生成式。本文主要介绍大语言模型(Large Language Model,简称LLM)。

大语言模型介绍

什么是大语言模型(LLM)

通过海量文本训练的、能识别人类语言、执行语言类任务、拥有大量参数的模型,称之为大语言模型。GPT、LLaMA、Mistral、BERT等都是LLM,LLM是对训练文本信息的压缩,同时拥有了泛化能力,不同于数据库和搜索引擎,LLM能创造性地生成历史上没有出现过的文本内容。

LLM能做什么

总体可以概括为:创作内容、处理和分析数据、自动化任务、智能客服

  • • 写作:写邮件、计划书、宣传文案、简单的故事等,可以模仿小红书风格、指定作家风格,尤其适合写长篇套话,但目前要写出完整且有趣的小说还比较难。
  • • 润色:提供大纲或已有文本,由LLM来扩写、改写,适用于洗稿、避免被查重等场景。
  • • 总结:提供会议记录、文章,由LLM自动总结要点和待办。
  • • 翻译:多语言翻译、白话文和文言文翻译,结合特定prompt进行多轮翻译可以实现惊艳的结果。
  • • 数据分析:从报告中提取数据、分析数据,做成可视化图表。
  • • 编程:Github Copilot,程序员都应该用。
  • • 提取结构化信息:从用户的自然语言中,提取出结构化的信息,方便传给程序做自动化处理。
  • • 智能助手:利用Agent实现工作流
  • • 智能客服:基于RAG实现智能客服

……等等

LLM有什么缺陷

目前LLM最大的缺陷是幻觉严重,经常会生成无中生有的回复,如果你没有对应的专业知识,很容易被带偏。所以如果你要用于工作、教育等严肃场景,人工二次校验是必要的。幻觉短期内是无法消除的,甚至LLM的泛化能力也跟幻觉有关,就像人类会做离奇的梦一样。为了解决LLM回复准确性的问题,RAG技术被广泛应用。

另外还有一些问题:训练信息更新不及时、逻辑能力差、推理速度慢等。

LLM产品和模型推荐

LLM产品推荐

排名有先后,仅代表个人意见。

国外产品的通病:对网络有要求;

国内产品的通病:有时会触发莫名其妙的限制;

图片

各个产品的使用地址:因个人公众号无法插入超链接,请点击最底部的“阅读原文”来查看链接。

  • • ChatGPT:网页版;非国区应用商店可下载APP;
  • • Poe:网页版;非国区应用商店可下载APP;
  • • Coze:国际版;国内版
  • • Gemini:个人版;开发者版,100万上下文
  • • Arc Search:官网下载客户端;非国区应用商店可下载APP;
  • • Perplexity:网页版;非国区应用商店可下载APP;
  • • 通义:网页版;各大应用商店可下载APP;
  • • 秘塔:网页版
  • • Kimi:网页版;各大应用商店可下载APP;
  • • 文心一言:网页版;各大应用商店可下载APP;
  • • 海螺AI:网页版;各大应用商店可下载APP;
  • • 智谱清言:网页版;各大应用商店可下载APP;
  • • 豆包:网页版;各大应用商店可下载APP;
  • • Microsoft Copilot:网页版;非国区应用商店可下载APP;
  • • HuggingChat:网页版;非国区应用商店可下载APP;
  • • 讯飞星火:网页版;各大应用商店可下载APP;
  • • 百小应:网页版;各大应用商店可下载APP;
LLM模型评测

部分数据参考LLM竞技场,含个人主观评判,仅代表个人意见。图片太大,在电脑端查看更佳。

图片

LLM教程

对于大多数人来说,没必要专门学习LLM的知识,最多学一下Prompt Engineering就够了。就像我们不需要学习iOS和安卓的底层系统,只需要知道有哪些便捷的系统功能即可。

优秀的LLM教程

因个人公众号无法插入超链接,请点击最底部的“阅读原文”来查看链接。

· 3Blue1Brown视频教程

首推这套教程,可视化讲解了Token、Embedding、Transformer等一系列概念,绝对是入门的最佳教程。

深度学习第5章:https://b23.tv/k68hwjD

深度学习第6章:https://b23.tv/11SNpcT

· Cohere文字教程

虽然是英文文字教程,但是写的非常浅显易懂,四级水平就能看懂。

链接:Cohere教程

· 电子书:《大语言模型》

这是一套包含了项目落地和实操的教程,适合程序员和AI从业人员。

链接:Github

· 台大李宏毅课程

大学的实际教学内容,从线性代数的角度讲解Transformer的原理。

视频地址:https://b23.tv/sasg96g

提示词工程(Prompt Engineering)

最有效的提示词策略是:使用更好的模型。使用小模型时各种提示词方法都控制不了输出结果,换成更大更好的模型后,一句提示词就可以解决。

提示词工程是用于弥补现阶段LLM能力的不足,随着LLM的能力提升,提示词工程的作用会越来越小。

这类教程有很多,我常用的是这个:Prompt教程

微调(Finetune)

微调可以补充和强化LLM的知识,例如使用中文数据集微调LLaMA 3 8B,即可大幅提升中文能力、减少回复里出现表情的情况。小模型推荐基于Phi 3、LLaMA 3、Mistral模型微调。中模型推荐基于Yi-34B微调。

这个Github仓库,提供了colab链接,可以在线微调小模型:colab免费微调模型

数据集

数据集的质量对LLM能力有很大的影响,人类可用的数据集现在已经被全部用于训练LLM了,并且已经开始使用AI合成的数据来训练LLM。关于数据集,可以查看这篇数据集综述

对应的开源数据集,包含444个数据集,大小超过774TB,覆盖8种语言:开源数据集

多模态LLM

LLM是语言模型,只能理解文字、生成文字,多模态的含义是除了文字能力外,还可以理解和生成图片、语音、视频。目前多模态LLM有两种,一种是GPT-4V和LLaVA,通过额外的图片识别模块具备多模态能力,另外一种是GPT-4o和Gemini,模型原生就是多模态,可以更快地处理和生成多模态信息。

关于多模态模型的综述

对应的项目地址

RAG

RAG(Retrieval Augmented Generation,检索增强生成)是目前LLM应用落地的重要方向,主要的应用场景是企业客服系统和搜索结果结构化展示(代表作是Perplexity和秘塔)。RAG对数据的规范程度要求比较高,数据越规范,查询效果越好,结合树形结构或知识图谱结构的数据,RAG可以实现更好的效果。

开源RAG框架推荐:Cohere;Cognita

Agent

Agent翻译成中文是智能体的意思,是AGI的前奏。现阶段的Agent只能算工作流,什么时候Agent能根据用户要求直接创建好Agent,才算是真正的智能体。

目前好用的Agent平台是Coze和Dify

LLM越狱

LLM有安全机制,会拒绝回答一些问题,LLM越狱可以让LLM按要求回答任何问题。

这个仓库收集了各个模型的越狱提示词:LLM越狱

本地部署LLM工具

个人电脑运行LLM,最大只能运行20B以下的模型,33B模型需要32G显存。比较适合本地运行的是Phi 3 Medium(14B)、LLaMA 3 8B、Mistral 7B。

推荐以下两个客户端:Ollama; LM Studio

LLM的未来

目前可以预见的趋势:

  • • Scaling Law 依旧有效,GPT-4 在22年年中完成训练,GPT-5在24年年中完成训练,参数规模提升依旧可以提升性能;
  • • 原生多模态展露头角,GPT-4o 的亮相,实现了实时语音交互,为语音助手的落地提供了技术支撑;
  • • 多 token 预测,Meta 发布的多 token 预测方法,一次预测多个 token 而不是单个 token ,可以提升 LLM 的逻辑能力,很有发展前景。

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值