一文讲透 MCP(附 Apifox MCP Server 内测邀请)
如果你关注着 AI 的发展,那么最近可能经常看到 MCP 这个词。
MCP 即模型上下文协议*(Model Context Protocol)*的缩写,于 2024 年 11 月由 Claude 大模型的公司 Anthropic 推出并开源。这是一个将 AI 助手连接到第三方数据源的新标准,包括内容存储库、业务工具和开发环境。它的目的是帮助 AI 大模型生成更好、更相关的回答。
通过联网搜索向 AI 提供最新信息
随着 AI 大模型获得了广泛的使用,该行业在训练模型方面投入了大量资金,新的模型在推理能力和生成质量方面得到了较大的进步。但是,训练 AI 的数据集始终是滞后的、固定的,再强大的 AI 也只是知道过去发生的事情,却无法实时从外界获取最新的信息,比如今天的天气情况、今天的热点新闻等。
为了解决这个问题,常见的 AI 助手通过 AI 代理模式,设计了联网搜索的工作流。当用户和 AI 助手对话,且开启联网搜索后,AI 助手会先将用户说的话发送给第三方搜索引擎,然后将第三方搜索引擎的返回的内容和用户说的话一起提供给 AI 大模型,再由 AI 大模型生成回答。可以看出,搜索引擎在这里充当了第三方实时信息源的角色,为 AI 大模型提供了额外的上下文信息。
通过 API 向 AI 提供自有系统数据
对于搜索引擎能搜索到的、有多种信息源的公开信息,AI 助理的这种联网搜索功能效果不错。但是,如果希望 AI 能提供行业内部信息、或者你研发的自有系统内的信息,AI 联网搜索的效果就很不好,甚至无法实现。
举个简单的例子,问开启了联网搜索的 DeepSeek 这个问题:Apifox 的最新版本是多少?DeepSeek 的回答是 2.6.41。但实际上,Apifox 的最新版已经到了 2.7.2,差了 10 个版本。
为了让自有系统和 AI 模型紧密协作,打破信息隔离,用户可以自行搭建 AI 代理,将自有系统的数据通过 API 的形式接入 AI 助手。继续上面的例子,我们可以将 Apifox 的更新日志内的信息,通过 API 向外提供。然后设定这样一个工作流:如果有人问 Apifox 的最新版本是多少,则调用这个 API,再将 API 返回的结果和用户的原始问题一起提供给 AI,这样 AI 就可以给出正确的回答了。
通过 MCP 服务器向 AI 提供上下文信息
以上只是一个非常简单的场景,在真实业务环境中,需要将多种数据源接入AI大模型,也就必须得为不同的数据源、不同的 AI 助手开发不同的连接器。虽然可以使用第三方 AI 代理工具或知识库工具,但仍然无法避免架构碎片化的问题。
MCP 协议正是为了解决数据连接器集成碎片化的问题而生。它使开发人员能够在其数据源和 AI 驱动的工具之间建立安全的双向连接。架构简单明了:开发人员可以通过 MCP 服务器公开他们的数据,也可以构建连接到这些服务器的 AI 应用程序(MCP 客户端)。
也就是说,开发者现在可以根据 MCP 这个标准协议来完成 AI 大模型与数据源的集成,而不是为每个数据源、每个 AI 助手维护单独的连接器。随着 MCP 生态系统的成熟,人工智能系统将在不同的工具和数据集之间移动时保持上下文,用更可持续的架构取代当今的零散集成。
通过 Apifox MCP Server
向 AI 提供接口文档
现在,越来越多的 AI 工具已经内置了 MCP 客户端,比如 Cursor、Cline、Claude Desktop 和 Cherry Studio,它们都已经具备连接到 MCP 服务器的能力。
Apifox 作为 API 设计、开发、测试一体化协作平台,致力于节省开发者的每一分钟,已经观察到了 MCP 在 API 开发工作流中的价值。我们希望每个人都能轻松地在 AI 和 API 之间架起桥梁。在此,我们宣布,Apifox MCP Server 开始内测。
,时长00:44
使用 Apifox MCP Server,可以将 Apifox 项目内的接口文档作为数据源提供给 Cursor 等支持 AI 编程的 IDE 工具,以便让 AI 能够直接访问项目对应的接口文档数据。
开发者可以通过 AI 助手完成以下工作:根据接口文档生成或修改代码、搜索接口文档内容等等,至于通过这个接口文档数据能让 AI 干什么更多更强大的活,请发挥你和你们团队的想象力😜
如何使用
安装配置好 MCP 后,Apifox MCP Server 会自动读取 Apifox 整个项目里的所有接口文档的数据并缓存在本地电脑,AI 可以通过 MCP 读取项目内所有的接口的接口文档数据。
你只要告诉 AI 你想要通过 API 文档做什么即可,示例:
- “通过 MCP 获取 API 文档,然后生成 Product 及其相关模型的定义代码”
- “根据 API 文档,然后在 Product DTO 里添加 API 文档新增的几个字段”
- “根据 API 文档给 Product 类的每个字段都加上注释”
- “根据 API 文档,生成接口 /users 相关的所有 MVC 代码”
注意:接口文档数据默认是会缓存在本地的,如果 Apifox 内的数据有更新,请告诉 AI 刷新接口文档数据,否则 AI 读到数据可能不是最新的。
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓