AI落地实战指南:企业如何成功实施AI战略?

1.企业开展AI业务的背景

在艰难的全球背景下,企业需要适应不断变化的新市场环境以保持竞争力,数字化成为共同出路。研究表明,许多大型公司在疫情下抗风险能力和竞争力更强,更能把握市场主导地位,而那些曾经对数字化转型犹豫不决的公司努力将经营转移到线上,已实现数字化转型的公司则设法优化在线业务。例如,消费者在线购物意愿上升,博物馆、健身房等也做出数字化转型尝试。

全球消费趋势显示,即使疫情过后,消费者在线购物意愿仍保持上升,需求不断被开发。在互联网背景下,用户行为、偏好和品味快速变化,传统的线下实体零售模式无法满足需求,基于互联网技术的新零售模式逐渐崛起。用户需求日益多样化和个性化,传统产品和服务难以满足期望,AI 可通过分析用户行为和偏好,提供个性化推荐和服务。

随着人口结构变化和社会发展,企业用工成本越来越高,促使企业寻求数字化转型,通过应用人工智能减少用工成本,提高效率。例如,人工质检存在招工难、管理难和效率低等问题,而 AI 质检可以有效规避这些问题,提高质检效率和准确度。AI 技术能够自动化重复性工作,提升生产效率;在金融、传媒、工业、医疗等行业有广泛应用;可以催生新兴产业,推动传统行业转型,改善社会服务质量等。

2.全球的AI产业政策

2.1美国:

  • 美国政府认为 AI 是具有巨大经济和社会效益的转型技术,连续发力人工智能,将其上升为国家战略。

  • 美国参议院发布的《推动美国在人工智能领域的创新:参议院人工智能政策路线图》提出每年至少拨款 320 亿美元,用于推动跨政府部门的 AI 研发、支持基础科学研究,并对 AI 在先进制造、智能城市、合成化学 & 生物等广泛领域的应用提供支持。同时建议制定培训私营部门劳动力的计划,改善高技能 STEM 工作者的移民制度。

  • 国家 AI 研发战略计划的策略包括对 AI 研究进行长期投资;开发有效的人机协作方法;了解并解决 AI 的伦理、法律和社会问题;确保 AI 系统的安全;为 AI 训练和测试开发可共享公共数据集和环境;通过标准和基准来衡量并评估 AI 技术;更好地了解国家 AI 研发劳动力的需求。

  • 特朗普新政府可能放松对一些人工智能问题的监管,加强人工智能出口管制,加强对特定国家的关注,减少与欧盟相关的反垄断执法,加大对自动驾驶汽车应用的支持,以及通过引入联邦立法豁免或禁止某些州法律,以简化美国人工智能监管。

  • 美国联邦机构通过积极在相关领域进行投资,支持了许多世界一流研究计划,如国防部发布《国防战略》和《国防部人工智能战略》,成立联合人工智能中心执行战略,并开展 “AI Next” 项目等。

  • 美国财政部日前发布的《建议规则制定公告》,拟从人工智能的预期用途和算力指标两个维度设置受控 投资的边界,限制美国投资者对与中国相关的半导体和微电子、量子信息技术、人工智能三个关键领域的特定安全技术和产品进行投资。

  • 2015 年对人工智能相关领域投入的研发资金为 11 亿美元,后续的人工智能发展政策仍强调对人工智能研究进行长期投资,以保持美国在这一领域的世界领先地位。

2.2中国:

  • 发布《新一代人工智能发展规划》,明确三步走战略,从构建开放协同的人工智能科技创新体系、培育高端高效的智能经济、建设安全便捷的智能社会、加强人工智能领域军民融合、构建泛在安全高效的智能化基础设施体系、前瞻布局重大科技项目等六个方面强化部署,推动产业融合,积极参与国际合作,支持 AI 道德研究。

  • 各地政府积极响应中央号召,将人工智能产业发展纳入当地规划,出台具体政策措施支持人工智能全产业链高质量发展。

    • 北京:7 月印发《北京市推动 “人工智能 +” 行动计划(2024-2025 年)》,到 2025 年底,力争形成 3-5 个先进可用、自主可控的基础大模型产品、100 个优秀的行业大模型产品和 1000 个行业成功案例;围绕机器人、教育、医疗、文化、交通等 5 个领域组织实施一批综合型、标杆性重大应用工程,促进大模型核心技术突破,增强人工智能工程化能力,提高重点行业的科技水平和服务质量,形成大模型行业应用新生态。

    • 上海:近日发布《上海市促进工业服务业赋能产业升级行动方案(2024-2027 年)》,聚焦人工智能在生产制造、研发设计中的落地应用,开发故障分析、流程工艺等工业语料产品,推动工业大模型发展,促进制造业全流程智能化;强化大模型在药物筛选、分子结构预测、药品检验检测等方面的应用。到 2027 年,打造不少于 100 家面向中小企业的数字化、智能化转型服务平台,吸引不少于 100 家人工智能大模型生态企业在 “模速空间” 集聚。

    • 杭州:7 月印发《支持人工智能全产业链高质量发展的若干措施》,从算力设施建设、模型开放生态、赋能实体经济、全产业链发展、人才队伍支撑五个方面提出 14 项具体举措。如支持算力技术攻关,对符合政策规定的项目按国家、省实际到账资助经费的 25% 给予资助,资助金额不超过 500 万元等。

    • 深圳:7 月印发《深圳市加快打造人工智能先锋城市行动方案》,明确推动人工智能技术、应用场景和商业模式等融合创新,推动深圳人工智能产业高质量发展;推进深圳开放智算中心建设,2024 年建成并投入运营算力规模达 4000P FLOPS(每秒浮点运算次数),鼓励各区选取一批工业上楼项目配建智算中心。

    • 北京经济技术开发区:2024 年 3 月发布政策,目标是到 2026 年,人工智能核心技术取得重大突破,算力算法数据有效支撑,场景赋能的广度和深度全面拓展,数据要素市场化建设成效显著,全面构建自主可控软硬件人工智能产业生态。具体政策包括加快提升算力水平、打造国产算力底座、构建高效协同创新体系、加强核心技术攻关、促进数据要素流通运用、建设北京人工智能数据训练基地、推动人工智能应用场景赋能与开放、打造人工智能产业集聚区等方面。例如每年发放 1 亿元的算力券,企业可申领用于算力租用;对经开区企业自主研发、公开发布的人工智能行业大模型,具有 10 个以上市场应用案例且实际完成合同额超过 2000 万元的,予以一次性 100 万元奖励等。

  • 工业和信息化部、中央网信办、国家发展改革委、国家标准委等四部门联合印发《国家人工智能产业综合标准化体系建设指南(2024 版)》,提出到 2026 年,新制定国家标准和行业标准 50 项以上,引领人工智能产业高质量发展的标准体系加快形成。

  • 确定了发展 AI 的四个国家驱动因素,包括硬件(主张在芯片和超级计算机制造方面赶超先进国家)、数据(强调在获取数据时促进政府和企业之间数据共享,同时加强数据保护)、开发算法(支持基础研究吸引和培养人才,鼓励科技巨头公司在海外建立 AI 研究院招募人才)、建立 AI 商业生态系统(向国内初创企业投资,并引导地方政府和国有企业吸引私人投资)。

  • 教育部启动 “人工智能赋能行动”,推出了 4 项具体行动;国家能源局发布《关于加快推进能源数字化智能化发展的若干意见》等。

  • 提出《全球人工智能治理倡议》,强调发展人工智能应坚持相互尊重、平等互利的原则,反对以意识形态划线或构建排他性集团,恶意阻挠他国人工智能发展。

2.3欧盟:

  • 《人工智能法案》于 2024 年 8 月 1 日正式生效,是全球首部全面监管人工智能的法规。采用基于风险的监管方法,对 AI 系统进行分类,针对高风险应用实施严格规定,设立禁止事项清单。覆盖从市场准入、运营责任到透明度要求的全链条规则,对在欧盟境内或影响欧盟市场的 AI 系统和活动产生约束力。

  • 法案的核心在于采取风险分级的方式,将人工智能系统分为禁止、高风险、有限风险和最低风险四类,并据此设定不同的合规标准。不可接受风险的 AI 系统禁令在法案生效 6 个月后开始适用,AI 开发者的行为准则在法案生效 9 个月后实施,对于通用 AI 的限制会在法案生效 12 个月后开始,整个法案的条款将在 24 个月后的 2026 年中期全面适用。

  • 要求具有 “系统性风险” 的通用人工智能(GPAI)承担更多的合规义务,如遵循特定透明度义务,公开模型训练方式的摘要,以及遵守欧盟版权法规等。高于一定计算阈值而被归为 “系统性风险” 的通用 AI 系统,需特别评估和减轻系统性风险、进行模型评估和对抗性测试等。

  • 对有违规行为的企业,欧盟最高将对其处以 3500 万欧元或全球年营业额 7% 的罚款,取二者中的较高值。

  • 欧盟委员会计划将 “地平线 2020” 等研究和创新项目中的人工智能投入增加 70%,预计在 2018 年至 2020 年间达到 15 亿欧元,并通过公私合作带动额外 25 亿欧元的投资;法国计划在 2022 年前投入 15 亿欧元用于支持人工智能的技术创新和创业。

3企业如何开展AI业务

3.1业务层面

  1. 确定业务问题
    • 分析企业或组织当前面临的主要挑战和机遇,确定哪些问题可以通过 AI 技术来解决。例如,提高生产效率、改善客户服务、优化决策过程等。

    • 对业务问题进行深入调研,了解问题的本质、影响范围和现有解决方案的局限性。

  2. 定义业务目标
    • 根据业务问题,明确 AI 业务的具体目标。例如,提高销售额、降低成本、提高客户满意度等。

    • 确保业务目标具有可衡量性和可实现性,以便后续进行评估和优化。

3.2人才储备与培养

  • 专业人才招聘:寻找具备 AI 技术背景的专业人才,如数据科学家、机器学习工程师、算法工程师等。同时,考虑招聘具有相关行业经验的人员,以便更好地理解业务需求和应用场景。

  • 员工技能提升:对现有员工进行 AI 技术培训,提高他们的数字化素养和技能水平,使员工能够适应 AI 技术在企业中的应用。

  • 外部合作获取资源:与高校、科研机构、AI 技术供应商等建立合作关系,获取技术支持和人才资源,拓宽企业的技术视野和人才储备渠道。

  • 行业交流了解动态:参加行业会议和研讨会,及时了解最新的 AI 技术动态和应用案例,掌握行业前沿信息,为企业的 AI 落地提供参考。

3.3技术层面

数据中台概念的出现解决了传统业务体系的数据孤岛等问题,而 AI 中台可看做是数据中台的进一步延伸,为企业提供通用化智能服务。随着人工智能步入商业化落地应用阶段,AI 数据中台的建立成为决定智能系统成败的关键,其在效率、协作、关联度、能力、时效等方面具有重要价值。

  1. 确定数据需求

    1. 根据业务目标和 AI 模型的要求,确定所需的数据类型、数量和质量标准。

    2. 考虑数据的来源、收集方法和存储方式。

  2. 数据收集

    1. 从内部系统(如企业数据库、业务流程管理系统等)和外部数据源(如市场调研数据、社交媒体数据等)收集相关数据。

    2. 确保数据的合法性和合规性,遵守相关的数据保护法规。

  3. 数据清洗与预处理

    1. 对收集到的数据进行清洗和预处理,去除噪声、异常值和重复数据。

    2. 进行数据标准化、归一化和特征提取等操作,以便后续的模型训练.

3.4选择合适的 AI 技术和工具

  1. 评估技术需求

    1. 根据业务目标和数据特点,评估不同的 AI 技术和工具的适用性。例如,机器学习、深度学习、自然语言处理、计算机视觉等。

    2. 考虑技术的成熟度、可扩展性和成本效益。

  2. 选择技术平台和工具

    1. 选择适合企业需求的 AI 技术平台和工具,如 TensorFlow、PyTorch、Scikit-learn 等。

    2. 考虑平台的易用性、性能和社区支持。

  3. 进行技术试验和验证

    1. 在小规模数据集上进行技术试验和验证,评估不同技术和工具的效果和性能。

    2. 根据试验结果调整技术方案和参数。

3.5模型开发与训练

  1. 设计模型架构

    1. 根据业务问题和数据特点,设计合适的 AI 模型架构。例如,神经网络、决策树、支持向量机等。

    2. 考虑模型的复杂度、准确性和可解释性。

  2. 进行模型训练

    1. 使用准备好的数据对模型进行训练,调整模型参数以提高模型的性能。

    2. 采用合适的训练算法和优化方法,如随机梯度下降、Adam 优化器等。

  3. 模型评估与优化

    1. 对训练好的模型进行评估,使用测试数据集验证模型的准确性和泛化能力。

    2. 根据评估结果进行模型优化,如调整模型结构、增加数据量、采用正则化方法等。

3.6部署与应用

  1. 选择部署方式

    1. 根据业务需求和技术条件,选择合适的部署方式。例如,云端部署、本地部署、边缘部署等。

    2. 考虑部署的成本、安全性和可维护性。

  2. 进行模型部署

    1. 将训练好的模型部署到生产环境中,确保模型的稳定性和可靠性。

    2. 建立监控和维护机制,及时发现和解决模型运行中的问题。

  3. 应用与优化

    1. 将 AI 模型应用到实际业务场景中,收集用户反馈和业务数据。

    2. 根据应用效果和反馈信息,不断优化模型和业务流程,提高 AI 业务的价值和竞争力。

3.7风险管理与合规

  1. 识别风险

    1. 识别开展 AI 业务可能面临的风险,如数据安全风险、算法偏见风险、法律合规风险等。

    2. 对风险进行评估,确定风险的影响程度和发生概率。

  2. 制定风险管理策略

    1. 针对不同的风险制定相应的风险管理策略,如加强数据安全保护、进行算法审计、遵守法律法规等。

    2. 建立风险预警机制,及时发现和应对风险事件。

  3. 确保合规性

    1. 遵守相关的法律法规和行业标准,确保 AI 业务的合规性。

    2. 建立内部合规制度和流程,加强对 AI 业务的监督和管理。

4总结

企业应该紧跟时代的步伐,根据AI 业务目标和需求,组建专业团队,收集和准备数据,选择合适的技术和工具,进行模型开发和训练,部署和应用模型,并进行风险管理和合规。通过科学合理的规划和实施,AI 业务可以为企业和组织带来巨大的价值和竞争优势。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值