深度学习:基于TensorFlow、Keras,使用长短期记忆神经网络模型(LSTM)对Microsoft股票进行预测分析

股票交易

前言

系列专栏:【机器学习:算法项目实战】✨︎
本专栏涉及金融、医疗、电商、图像识别、自然语言处理等多个领域的真实案例,让读者从基础的监督学习(如线性回归、逻辑回归、决策树、随机森林)、无监督学习(聚类算法、降维技术)到进阶的深度学习(神经网络、卷积神经网络CNN、循环神经网络RNN等),都能够全面掌握机器学习领域的核心算法,了解不同行业背景下机器学习的应用。

在本文中,我们将使用机器学习技术实现 Microsoft 股价预测。我们将使用 TensorFlow,这是一个由 Google 开发的开源 Python 机器学习框架。借助 TensorFlow,您可以轻松实现时间序列预测数据。由于股价预测是时间序列预测问题之一,我们将使用机器学习技术构建端到端的 Microsoft 股价预测。

1. 相关库和数据集

1.1 相关库介绍

Python 库使我们能够非常轻松地处理数据并使用一行代码执行典型和复杂的任务。

  • Pandas – 该库有助于以 2D 数组格式加载数据框,并具有多种功能,可一次性执行分析任务。
  • Numpy – Numpy 数组速度非常快,可以在很短的时间内执行大型计算。
  • Matplotlib/Seaborn – 此库用于绘制可视化效果,用于展现数据之间的相互关系。
  • Sklearn – 包含多个库,这些库具有预实现的功能,用于执行从数据预处理到模型开发和评估的任务。
  • Tensorflow – TensorFlow 是由 Google Developers 开发的机器学习框架,旨在使机器学习算法的实现变得轻而易举。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from datetime import datetime
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import metrics
from keras.metrics import RootMeanSquaredError 
from sklearn.preprocessing import StandardScaler

import warnings 
warnings.filterwarnings("ignore") 

1.2 数据集介绍

现在,让我们加载包含可交易天数的 Microsoft 股票的 OHLC 数据的数据集。

df = pd.read_csv('Microsoft_Stock.csv') 

.head()函数根据位置返回对象的前 n 行。该函数可用于快速测试对象中的数据类型是否正确。

df.head()

数据对象的前五行

1.3 描述性统计

.describe()生成描述性统计信息。描述性统计包括总结数据集分布的中心倾向、分散性和形状的统计,不包括 NaN 值。

可分析数值序列和对象序列,以及混合数据类型的 DataFrame 列集。输出结果将根据所提供的数据而有所不同。

df.describe()

描述性统计

1.4数据的信息

.info()方法打印有关DataFrame的信息,包括索引dtype和列、非null值以及内存使用情况。

df.info()

数据的信息

2. 数据清洗与处理

更改 Date 的数据类型,将object的对象转化为datetime类型

df['Date'] = df['Date'].apply(lambda x: datetime.strptime(x, "%m/%d/%Y %H:%M:%S"))
df['Date']

datetime对象

3. 探索性数据分析

EDA是一种使用视觉技术分析数据的方法。它用于发现趋势和模式,或借助统计摘要和图形表示来检查假设。

3.1 股票的开盘、收盘价

plt.style.use("fivethirtyeight")
plt.plot(df['Date'], df['Open'], color="blue", label="open") 
plt.plot(df['Date'], df['Close'], color="green", label="close") 
plt.title("Microsoft Open-Close Stock") 
plt.legend() 

股票的开盘与收盘价

3.2 股票的交易量

交易量是指一段时间内(通常是一天内)易手的资产或证券的数量。例如,股票交易量是指每天开盘和收盘之间交易的证券股票数量。交易量以及交易量随时间的变化是技术交易者的重要输入。

plt.plot(df['Date'], df['Volume']) 
plt.show()

股票的交易量

3.3 股票不同特征之间的相关性

相关性是一种衡量两个变量相对于彼此移动程度的统计数据,其值必须介于-1.0和+1.0之间。相关性衡量关联,但不显示 x 是否导致 y,反之亦然,或者关联是否由第三个因素引起。

sns.heatmap(df.corr(), annot=True, cbar=False) 
plt.show() 

股票不同特征之间的相关性
现在,让我们绘制 2015 年至 2021 年期间 Microsoft 股票的收盘价,即 6 年的时间跨度。
在这里插入图片描述

4. 数据建模(循环神经网络模型)

4.1 数据准备(拆分为训练集和测试集)

# prepare the training set samples 
msft_close = df.filter(['Close']) 
dataset = msft_close.values 
training = int(np.ceil(len(dataset) *.95)) 

# scale the data 
ss = StandardScaler() 
ss = ss.fit_transform(dataset) 

train_data = ss[0:int(training), :] 

x_train = [] 
y_train = [] 

# considering 60 as the batch size, 
# create the X_train and y_train 
for i in range(60, len(train_data)): 
	x_train.append(train_data[i-60:i, 0]) 
	y_train.append(train_data[i, 0]) 

x_train, y_train = np.array(x_train), np.array(y_train) 
X_train = np.reshape(x_train, 
					(x_train.shape[0], 
					x_train.shape[1], 1)) 

4.2 模型构建(LSTM)

为了解决时间序列或股价预测问题,我们建立了一个循环神经网络模型,该模型可以利用单元状态和记忆状态记忆之前的状态,非常方便。由于 RNN 难以训练和修剪消失梯度,我们使用了 LSTM,它是 RNN 的门控单元,LSTM 可以减少消失梯度问题。

model = keras.models.Sequential() 
model.add(keras.layers.LSTM(units=64, 
							return_sequences=True, 
							input_shape 
							=(X_train.shape[1], 1))) 
model.add(keras.layers.LSTM(units=64)) 
model.add(keras.layers.Dense(128)) 
model.add(keras.layers.Dropout(0.5)) 
model.add(keras.layers.Dense(1)) 

print(model.summary()) 

LSTM

4.3 编译和拟合

在编译模型时,我们需要提供以下三个基本参数:

optimizer - 通过梯度下降法优化成本函数的方法。
loss - 损失函数,我们通过它来监控模型是否在训练中不断改进。
metrics - 通过预测训练数据和验证数据来评估模型。

model.compile(optimizer='adam', loss='mae', 
			metrics = [metrics.MeanSquaredError(), metrics.AUC()]) 

history = model.fit(X_train, y_train, epochs=20) 

编译拟合过程
我们得到的平均绝对误差为 0.0661,接近完美误差分值。

4.4 模型评估

现在,我们已经准备好了模型,让我们用不同的指标来评估它在验证数据上的性能。为此,我们将首先使用该模型预测验证数据的类别,然后将输出结果与真实标签进行比较。

testing = ss[training - 60:, :] 
x_test = [] 
y_test = dataset[training:, :] 
for i in range(60, len(testing)): 
	x_test.append(testing[i-60:i, 0]) 

x_test = np.array(x_test) 
X_test = np.reshape(x_test, 
					(x_test.shape[0], 
					x_test.shape[1], 1)) 

pred = model.predict(X_test) 

模型评估
现在,让我们绘制微软股票价格的已知数据和预测价格趋势图,看看它们是与之前的趋势一致,还是完全不同。

train = df[:training] 
test = df[training:] 
test['Predictions'] = pred 

plt.figure(figsize=(10, 8)) 
plt.plot(train['Close'], c="b") 
plt.plot(test[['Close', 'Predictions']]) 
plt.title('Microsoft Stock Close Price') 
plt.ylabel("Close") 
plt.legend(['Train', 'Test', 'Predictions']) 

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

矩阵猫咪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值