Yolov8 引入CVPR 2023 BiFormer: 基于动态稀疏注意力构建高效金字塔网络架构,对小目标涨点明显

105 篇文章 ¥129.90 ¥299.90
博客介绍了BiFormer,一种动态稀疏注意力的双层路由方法,用于减轻Vision Transformer的计算负担。BiFormer在Yolov8中实现后,经过多个数据集验证,显著提高了mAP,特别是在小目标和遮挡物检测上的精度。此外,还讨论了如何在Yolov8中集成和优化DCNV3。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💡💡💡本文改进通过双层路由(bi-level routing)提出了一种新颖的动态稀疏注意力(dynamic sparse attention ),以实现更灵活的计算分配和内容感知,使其具备动态的查询感知稀疏性

 💡💡💡 本文方法对小目标检测效果比较好,1)因为BRA模块是基于稀疏采样而不是下采样,一来可以保留细粒度的细节信息,2)二来同样可以达到节省计算量的目的;

 

收录

YOLOv8原创自研

评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值