RT-DETR算法优化改进:SENet v2,Squeeze-Excitation模块融合Dense Layer,效果秒杀SENet

本文介绍了将SENet v2与Dense Layer融合应用于RT-DETR算法,增强网络的通道模式捕获和全局知识。通过Squeeze Aggregated Excitation (SaE)模块,提高了ResNet架构的性能。详细展示了在RT-DETR中引入SENetV2的步骤,包括代码修改和配置文件更新。
摘要由CSDN通过智能技术生成

💡💡💡本文自研创新改进SENet v2,针对SENet主要优化点,提出新颖的多分支Dense Layer,并与Squeeze-Excitation网络模块高效融合融合增强了网络捕获通道模式和全局知识的能力

推荐指数:五星

SENet v2如何在RT-DETR中使用:1)作为注意力机制直接使用;2)RepC3结合;3)HGBlock结合;

RT-DETR魔术师专栏介绍:

https://blog.csdn.net/m0_63774211/category_12497375.html

✨✨✨魔改创新RT-DETR

🚀🚀🚀引入前沿顶会创新,助力RT-DETR

🍉🍉ἴ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值