YOLOv10涨点改进:注意力魔改 | 轻量级自注意力机制CoordAttention | CVPR2021

本文介绍了将CoordAttention注意力机制应用于YOLOv10的改进,取代PSA或MHSA,提高了目标检测的mAP50,从0.683提升至0.704。CoordAttention结合位置信息,增强空间关系捕捉,适用于实时检测、分割、pose和分类任务。提供了源码和结构图,适用于计算机视觉创新研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 💡💡💡本文改进:替换YOLOv10中的PSA进行二次创新,1)CoordAttention注意力替换 PSA中的多头自注意力模块MHSA注意力;2) CoordAttention直接替换 PSA;

💡💡💡CoordAttention优势:不仅会考虑输入的特征信息,还会考虑每个像素点的位置信息,从而更好地捕捉空间上的局部关系和全局关系。

 在NEU-DET案列进行可行性验证,1)mAP50从0.683提升至0.7 ;2)mAP50从0.683提升至0.704

改进1结构图:

改进1结构图: 

 《YOLOv10魔术师专栏》将从以下各个方向进行创新:

原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化 【小目标性能提升】前沿论文分享】【训练实战篇】

订阅者通过添加WX: AI_CV_0624,入群沟通,提供改进结构图等一系列定制化服务。

定期向订阅者提供源码工程,配合博客使用。

订阅者可以申请发票,便于报销 

💡💡💡为本专栏订阅者提供创新点改进代码,改进网络结构图,方便paper写作!!!

💡💡💡适用场景:红外、小目标检测、工业缺陷检测、医学影像、遥感目标检测、低对比度场景

💡💡💡适用任务:所有改进点适用【检测】、【分割】、【pose】、【分类】等

💡💡💡全网独家首发创新,【自研多个自研模块】,【多创新点组合适合paper 】!!!

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、24年最新顶会改进思路、原创自研paper级创新等

🚀🚀🚀 本项目持续更新 | 更新完结保底≥80+ ,冲刺100+ 🚀🚀🚀

🍉🍉🍉 联系WX: AI_CV_0624 欢迎交流!🍉🍉🍉

⭐⭐⭐专栏涨价趋势 159 ->199->259->299,越早订阅越划算⭐⭐⭐

💡💡💡 2024年计算机视觉顶会创新点适用于Yolov5、Yolov7、Yolov8、Yolov9等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!

💡💡💡重点:通过本专栏的阅读,后续你也可以设计魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

1.YOLOv10介绍

论文: https://arxiv.org/pdf/2405.14458

代码: GitHub - THU-MIG/yolov10: YOLOv10: Real-Time End-to-End Object Detection

摘要:在过去的几年里,由于其在计算成本和检测性能之间的有效平衡,YOLOS已经成为实时目标检测领域的主导范例。研究人员已经探索了YOLOS的架构设计、优化目标、数据增强策略等,并取得了显著进展。然而,对用于后处理的非最大抑制(NMS)的依赖妨碍了YOLOS的端到端部署,并且影响了推理延迟。此外,YOLOS中各部件的设计缺乏全面和彻底的检查,导致明显的计算冗余,限制了模型的性能。这导致次优的效率,以及相当大的性能改进潜力。在这项工作中,我们的目标是从后处理和模型架构两个方面进一步推进YOLOS的性能-效率边界。为此,我们首先提出了用于YOLOs无NMS训练的持续双重分配,该方法带来了有竞争力的性能和低推理延迟。此外,我们还介绍了YOLOS的整体效率-精度驱动模型设计策略。我们从效率和精度两个角度对YOLOS的各个组件进行了全面优化,大大降低了计算开销,增强了性能。我们努力的成果是用于实时端到端对象检测的新一代YOLO系列,称为YOLOV10。广泛的实验表明,YOLOV10在各种模型规模上实现了最先进的性能和效率。例如,在COCO上的类似AP下,我们的YOLOV10-S比RT-DETR-R18快1.8倍,同时具有2.8倍更少的参数和FLOPS。与YOLOV9-C相比,YOLOV10-B在性能相同的情况下,延迟减少了46%,参数减少了25%。

​​​​

1.1  C2fUIB介绍

为了解决这个问题,我们提出了一种基于秩的块设计方案,旨在通过紧凑的架构设计降低被证明是冗余的阶段复杂度。我们首先提出了一个紧凑的倒置块(CIB)结构,它采用廉价的深度可分离卷积进行空间混合,以及成本效益高的点对点卷积进行通道混合

C2fUIB只是用CIB结构替换了YOLOv8中 C2f的Bottleneck结构

实现代码ultralytics/nn/modules/block.py

​​​​

​​​​

1.2  PSA介绍

具体来说,我们在1×1卷积后将特征均匀地分为两部分。我们只将一部分输入到由多头自注意力模块(MHSA)和前馈网络(FFN)组成的NPSA块中。然后,两部分通过1×1卷积连接并融合。此外,遵循将查询和键的维度分配为值的一半,并用BatchNorm替换LayerNorm以实现快速推理。

实现代码ultralytics/nn/modules/block.py

​​​​

1.3 SCDown

OLOs通常利用常规的3×3标准卷积,步长为2,同时实现空间下采样(从H×W到H/2×W/2)和通道变换(从C到2C)。这引入了不可忽视的计算成本O(9HWC^2)和参数数量O(18C^2)。相反,我们提议将空间缩减和通道增加操作解耦,以实现更高效的下采样。具体来说,我们首先利用点对点卷积来调整通道维度,然后利用深度可分离卷积进行空间下采样。这将计算成本降低到O(2HWC^2 + 9HWC),并将参数数量减少到O(2C^2 + 18C)。同时,它最大限度地保留了下采样过程中的信息,从而在减少延迟的同时保持了有竞争力的性能。

实现代码ultralytics/nn/modules/block.py

  2.CoordAttention原理介绍

论文:https://arxiv.org/pdf/2103.02907.pdf

        CoordAttention是一种注意力机制,在计算机视觉中被广泛应用。它可以捕捉特定位置的空间关系,并在注意力计算中加以利用。与常规的注意力机制不同,CoordAttention在计算注意力时,不仅会考虑输入的特征信息,还会考虑每个像素点的位置信息,从而更好地捕捉空间上的局部关系和全局关系。这种注意力机制可以应用于许多计算机视觉任务,如图像分类、目标检测和语义分割等。 

       新加坡国立大学的Qibin Hou等人提出了一种为轻量级网络设计的新的注意力机制,该机制将位置信息嵌入到了通道注意力中,称为coordinate attention(简称CoordAttention,下文也称CA),该论文已被CVPR2021收录。

​​

        CoordAttention简单灵活且高效,可以插入经典的轻量级网络(如MobileNetV2)在几乎不带来额外计算开销的前提下,提升网络的精度。实验表明,CoordAttention不仅仅对于分类任务有不错的提高,对目标检测、实例分割这类密集预测的任务,效果提升更加明显。

​​

SE、CBAM和CA模块注意力结果可视化,CA更能精确关注感兴趣目标。 

效果秒杀CBAM、SE

 3.CoordAttention如何加入到YOLOv10

3.1新建ultralytics/nn/attention/attention.py


######################  CoordAtt  ####     start   by  AI&CV  ###############################
import torch
import torch.nn as nn
import torch.nn.functional as F

from ultralytics.nn.modules.conv import Conv
class h_sigmoid(nn.Module):
    def __init__(self, inplace=True):
        super(h_sigmoid, self).__init__()
        self.relu = nn.ReLU6(inplace=inplace)

    def forward(self, x):
        return self.relu(x + 3) / 6


class h_swish(nn.Module):
    def __init__(self, inplace=True):
        super(h_swish, self).__init__()
        self.sigmoid = h_sigmoid(inplace=inplace)

    def forward(self, x):
        return x * self.sigmoid(x)


class CoordAtt(nn.Module):
    def __init__(self, inp, reduction=32):
        super(CoordAtt, self).__init__()
        self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
        self.pool_w = nn.AdaptiveAvgPool2d((1, None))

        mip = max(8, inp // reduction)

        self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(mip)
        self.act = h_swish()

        self.conv_h = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0)
        self.conv_w = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0)

    def forward(self, x):
        identity = x

        n, c, h, w = x.size()
        x_h = self.pool_h(x)
        x_w = self.pool_w(x).permute(0, 1, 3, 2)

        y = torch.cat([x_h, x_w], dim=2)
        y = self.conv1(y)
        y = self.bn1(y)
        y = self.act(y)

        x_h, x_w = torch.split(y, [h, w], dim=2)
        x_w = x_w.permute(0, 1, 3, 2)

        a_h = self.conv_h(x_h).sigmoid()
        a_w = self.conv_w(x_w).sigmoid()

        out = identity * a_w * a_h

        return out

class PSCoordAtt(nn.Module):

    def __init__(self, c1, c2, e=0.5):
        super().__init__()
        assert (c1 == c2)
        self.c = int(c1 * e)
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv(2 * self.c, c1, 1)

        self.attn = CoordAtt(self.c)
        self.ffn = nn.Sequential(
            Conv(self.c, self.c * 2, 1),
            Conv(self.c * 2, self.c, 1, act=False)
        )

    def forward(self, x):
        a, b = self.cv1(x).split((self.c, self.c), dim=1)
        b = b + self.attn(b)
        b = b + self.ffn(b)
        return self.cv2(torch.cat((a, b), 1))
######################  CoordAtt  ####     end   by  AI&CV  ###############################

3.2 修改tasks.py

1)首先进行引用定义

from ultralytics.nn.attention.attention import *

2)修改def parse_model(d, ch, verbose=True):  # model_dict, input_channels(3)

只需要在你源码基础上加入PSCoordAtt,CoordAtt(切勿直接复制过去)

n = n_ = max(round(n * depth), 1) if n > 1 else n  # depth gain
        if m in {
            Classify,
            Conv,
            ConvTranspose,
            GhostConv,
            Bottleneck,
            GhostBottleneck,
            SPP,
            SPPF,
            DWConv,
            Focus,
            BottleneckCSP,
            C1,
            C2,
            C2f,
            RepNCSPELAN4,
            ADown,
            SPPELAN,
            C2fAttn,
            C3,
            C3TR,
            C3Ghost,
            nn.ConvTranspose2d,
            DWConvTranspose2d,
            C3x,
            RepC3,
            PSA,PSCoordAtt,CoordAtt,
            SCDown,
            C2fCIB
        }:
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            if m is C2fAttn:
                args[1] = make_divisible(min(args[1], max_channels // 2) * width, 8)  # embed channels
                args[2] = int(
                    max(round(min(args[2], max_channels // 2 // 32)) * width, 1) if args[2] > 1 else args[2]
                )  # num heads

            args = [c1, c2, *args[1:]]
            if m in (BottleneckCSP, C1, C2, C2f, C2fAttn, C3, C3TR, C3Ghost, C3x, RepC3, C2fCIB):
                args.insert(2, n)  # number of repeats
                n = 1

 

3.3 yolov10n-CoordAtt.yaml

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024] 

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 1, CoordAtt, [1024]] # 10

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 19 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)

3.4 yolov10n-PSCoordAtt.yaml

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024] 

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 1, PSCoordAtt, [1024]] # 10

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 19 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)

4.实验结果分析

原始YOLOv10n结果如下:

原始mAP50为0.683

YOLOv10n summary (fused): 285 layers, 2696756 parameters, 0 gradients, 8.2 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 16/16 [00:12<00:00,  1.27it/s]
                   all        486       1069      0.634      0.662      0.683      0.392
               crazing        486        149      0.409      0.248      0.298     0.0996
             inclusion        486        222      0.677      0.774      0.768      0.411
               patches        486        243      0.789      0.868      0.905      0.582
        pitted_surface        486        130      0.752      0.722      0.757      0.492
       rolled-in_scale        486        171      0.549      0.561      0.561      0.263
             scratches        486        154       0.63      0.797      0.807      0.505

​​​

4.1 CoordAtt注意力替换 MHSA注意力

实验结果如下:

mAP50从0.683提升至0.7 

YOLOv10n-AKConv summary (fused): 297 layers, 2663046 parameters, 0 gradients, 7.9 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 16/16 [00:11<00:00,  1.42it/s]
                   all        486       1069      0.709      0.621        0.7      0.393
               crazing        486        149      0.579      0.176       0.33      0.129
             inclusion        486        222      0.768      0.702      0.757       0.41
               patches        486        243      0.826      0.841      0.916       0.59
        pitted_surface        486        130      0.745      0.698       0.76      0.484
       rolled-in_scale        486        171      0.611      0.561      0.629       0.29
             scratches        486        154      0.725      0.747      0.811      0.455

 ​

4.2  CoordAtt注意力直接替换 PSA 

实验结果如下:

mAP50从0.683提升至0.704

YOLOv10n-PSCoordAtt summary (fused): 285 layers, 2649292 parameters, 0 gradients, 8.2 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 16/16 [00:10<00:00,  1.57it/s]
                   all        486       1069      0.675      0.666      0.704      0.397
               crazing        486        149      0.505      0.255      0.364      0.125
             inclusion        486        222      0.676      0.703      0.766      0.407
               patches        486        243      0.786      0.875      0.895      0.575
        pitted_surface        486        130      0.783      0.723      0.765      0.489
       rolled-in_scale        486        171      0.599      0.612      0.607      0.283
             scratches        486        154      0.701      0.831      0.825        0.5

欢迎点赞关注  订阅专栏,文末附微信!!!

欢迎点赞关注  订阅专栏,文末附微信!!!

欢迎点赞关注  订阅专栏,文末附微信!!!

### 关于ECA Network和CoordAttention Mechanism #### ECA Network概述 ECA-Net(Efficient Channel Attention Network)是一种高效的通道注意力机制,旨在通过减少计算复杂度来提升卷积神经网络的表现[^1]。该方法的核心在于引入了一种轻量级的一维卷积操作代替传统的全局平均池化以及全连接层结构。具体来说,在ECA模块的设计中,采用了一个自适应调整核大小的策略以优化一维卷积的效果[^2]。 以下是基于PyTorch实现的一个简单版本的ECA模块代码: ```python import torch.nn as nn class eca_layer(nn.Module): """Constructs a ECA module. Args: channel: Number of channels of the input feature map k_size: Adaptive selection of kernel size """ def __init__(self, channel, k_size=3): super(eca_layer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): # Feature descriptor on the global spatial information y = self.avg_pool(x) # Two different branches of ECA module y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1) # Multi-scale information fusion y = self.sigmoid(y) return x * y.expand_as(x) ``` 此代码片段展示了如何构建并应用ECA模块至输入特征图上[^3]。 #### CoordAttention Mechanism简介 CoordAttention则是一种空间注意力机制,它不仅关注图像的空间位置关系,还考虑到了坐标轴之间的相互作用。相比其他仅依赖单一维度或者整体统计特性的方法,CoordAttention能够更精确地捕捉目标物体的位置信息[^4]。其主要特是将H×W尺寸的感受野压缩成两个方向上的向量表示形式——即高度h和宽度w分别对应的响应强度分布情况;随后再经过一系列变换得到最终加权系数矩阵用于调节原始feature maps中的每一个像素权重值。 虽然这里没有提供具体的coord_attention pytorch实现样例,但是可以参照官方文档或者其他社区贡献者分享出来的资源来进行学习实践。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值