YOLOv10涨点改进:原创自研 | 自研独家创新MSAM注意力,通道注意力升级,魔改CBAM

本文介绍YOLOv10的原创改进,特别是自研MSAM(多尺度通道注意力模块),该模块提升了CBAM的性能,适用于目标检测、分割等任务。通过MSAM的加入,模型在多个数据集上实现性能增益,适用于红外、小目标检测等场景。作者提供魔改代码和结构图,帮助读者理解和应用这些创新点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  💡💡💡本文自研创新改进MSAM(CBAM升级版):通道注意力具备多尺度性能,多分支深度卷积更好的提取多尺度特征,最后高效结合空间注意力

 1)作为注意力MSAM使用;

推荐指数:五星

MSCA  |   亲测在多个数据集能够实现涨点,对标CBAM。

改进1结构图:

改进2结构图:

MSAM(Multi-Stage Attention Mechanism)是一种改进版的自注意力机制,它与传统的自注意力(Self-Attention)和全连接注意力(Full Connection Attention)在处理复杂信息和计算效率上有所不同。 1. **自注意力(Self-Attention)**:它是Transformer模型的核心部分,允许模型同时考虑输入序列中的所有位置,权重由每个位置的上下文特征计算得出。自注意力提供了全局视角,但它可能对长序列处理效率较低,因为它计算的是所有元素之间的依赖关系。 2. **全连接注意力(Full Connection Attention)**:这种机制通常指的是没有限制的注意力机制,即每个输入元素都可以直接与序列中的其他所有元素进行连接。这可能导致大量的参数和计算,特别是在大规模数据集上。 **MSAM的独特之处**: - **阶段化(Multi-Stage)**:MSAM注意力分为多个阶段,每个阶段专注于不同的特征层次或者局部区域,这有助于减少计算量,特别是对于长序列,分阶段处理能够更有效地捕捉局部依赖。 - **多级抽象**:通过分层设计,MSAM能够处理不同抽象级别的信息,提高了模型对复杂输入的理解能力。 - **动态计算图**:可能采用条件或可调整的注意力结构,可以根据输入内容动态决定哪些部分更重要,从而更灵活和针对性地聚焦关键信息。 相关问题: 1. MSAM如何解决自注意力机制在长序列上的效率问题? 2. 全连接注意力的缺是什么? 3. MSAM的分阶段设计是如何增强模型性能的?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值