YOLO目标检测创新改进与实战案例专栏
专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLO基础解析+创新改进+实战案例
介绍

摘要
本项目介绍了一种轻量级的 Mixed Local Channel Attention (MLCA) 模块,该模块同时考虑通道信息和空间信息,并结合局部信息和全局信息以提高网络的表达效果。基于该模块,我们提出了 MobileNet-Attention-YOLO(MAY) 算法,用于比较各种注意力模块的性能。在 Pascal VO
本文介绍了YOLOv8的一个改进版——Mixed Local Channel Attention (MLCA) 模块,该模块结合了通道信息、空间信息、局部和全局信息,提升了模型的表达能力和检测性能。在Pascal VOC和SMID数据集上,MLCA相对于SE和CA模块表现出更好的性能。文章提供了MLCA的结构、工作原理,并提供了引入代码、配置文件修改指南及实验脚本。
订阅专栏 解锁全文
3401

被折叠的 条评论
为什么被折叠?



