YOLOv10轻量化改进:Ghostnet、G_ghost、Ghostnetv2家族大作战(二):华为Ghostnetv2,端侧小模型性能新SOTA | NeurIPS22 Spotlight

博客深入探讨了YOLOv10的改进,尤其是引入华为Ghostnetv2带来的性能提升。Ghostnetv2通过DFC注意力模块增强空间信息捕获能力,实现端侧小模型的性能SOTA。文章涵盖了YOLOv10的C2fUIB、PSA和SCDown等创新点,以及Ghostnetv2的结构和优势,适合于红外、小目标检测等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  💡💡💡创新点:在 GhostNet 中,一半的特征的空间信息被廉价操作 (3×3 Depth-wise Convolution) 所捕获,其余的特征只是由 1×1 的 Point-wise 卷积得到的,与其他像素没有任何信息上的交流。捕捉空间信息的能力很弱,这可能会妨碍性能的进一步提高, GhostNetV2 是 GhostNet 的增强版本

💡💡💡Ghostnet、G_ghost、Ghostnetv2性能比较

layers  parameters GFLOPs
yolov10n 385 2709364 8.4
YOLOv10n-C2f_GhostBottleneck 464 2255444 7.1
YOLOv10n-C2f_GhostBottleneckV2 476 2255444 7.1
YOLOv10n-C2f_g_ghostBottleneck 39
### YOLOv7轻量化GhostNet改进方法实现 #### Ghost模块简介 Ghost模块是一种高效的网络设计思路,其核心思想是利用廉价操作生成更多的特征图,从而减少计算成本并保持模型性能。这种技术最早由华为诺亚方舟实验室提出,并被广泛应用于图像分类、目标检测等领域[^1]。 #### G-Ghost方案概述 为了进一步优化YOLOv7的效率,G-Ghost方案针对传统Ghost模块进行了升级,使其更适合GPU环境下的推理加速。该方案的核心在于调整Ghost模块的设计以更好地适配现代硬件架构,同时保留了原Ghost模块高效的特点。 #### 修改 `GGhostRegNet.py` 文件 以下是基于G-Ghost模块对YOLOv7进行轻量化改造的关键代码片段: ```python import torch.nn as nn class GGhostModule(nn.Module): def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True): super(GGhostModule, self).__init__() self.oup = oup init_channels = int(oup / ratio) new_channels = init_channels * (ratio - 1) self.primary_conv = nn.Sequential( nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size//2, bias=False), nn.BatchNorm2d(init_channels), nn.ReLU(inplace=True) if relu else nn.Identity(), ) self.cheap_operation = nn.Sequential( nn.Conv2d(init_channels, new_channels, dw_size, 1, dw_size//2, groups=init_channels, bias=False), nn.BatchNorm2d(new_channels), nn.ReLU(inplace=True) if relu else nn.Identity(), ) def forward(self, x): x1 = self.primary_conv(x) x2 = self.cheap_operation(x1) out = torch.cat([x1, x2], dim=1) return out[:, :self.oup, :, :] ``` 上述代码定义了一个的卷积层——`GGhostModule`,它通过组合少量的标准卷积和深度可分离卷积来生成丰富的特征表示,显著降低了参数数量和计算复杂度。 #### YAML配置文件设置 为了让YOLOv7能够加载自定义的G-Ghost模块,需要创建一个的`.yaml`配置文件。以下是一个简单的例子: ```yaml # Model configuration for lightweight YOLOv7 with G-Ghost module nc: 80 # number of classes depth_multiple: 0.33 # model depth multiple width_multiple: 0.50 # layer channel width multiple backbone: # [from, number, module, args] [[-1, 1, Focus, [64, 3]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C3, [128]], [-1, 1, GGhostModule, [256, 3, 2]], # Integrate G-Ghost Module here ] head: ... ``` 此配置文件中引入了`GGhostModule`作为骨干网络的一部分,替代原有的标准卷积层,实现了模型的整体轻量化。 #### 测试流程验证 完成以上修改后,可以通过训练脚本运行实验,观察模型的表现是否达到预期效果。具体命令如下所示: ```bash python train.py --img 640 --batch 16 --epochs 50 --data coco.yaml --cfg models/yolov7_gghost.yaml --weights '' ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值