YOLO11涨点优化:block改进 | RepViTBlock和C3k2进行结合实现二次创新 | CVPR2024清华RepViT

💡💡💡本文独家改进:CVPR2024  清华提出RepViT:轻量级新主干!从ViT角度重新审视移动CNN,RepViTBlock和C3k2进行结合实现二次创新

 💡💡💡如何跟YOLO11结合:结合YOLO11的C3k2

 《YOLOv11魔术师专栏》将从以下各个方向进行创新:

原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化 【小目标性能提升】前沿论文分享】【训练实战篇】

订阅者通过添加WX: </

### YOLOv11结合DCNv4C3K2进行二次创新的方法 #### 1. 可变形卷积V4 (DCNv4) 的引入 为了提升YOLOv11的关键检测能力,在网络架构中引入了最新的可变形卷积版本——DCNv4。这一升级不仅加速了模型训练过程中的收敛速度,还极大提升了推理阶段的速度与精度[^2]。 ```python import torch.nn as nn class DeformableConvolutionV4(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1): super(DeformableConvolutionV4, self).__init__() # 定义DCNv4层 self.dcn_v4_layer = ... # 初始化逻辑 def forward(self, x): return self.dcn_v4_layer(x) ``` #### 2. C3k2模块的应用 针对传统残差结构存在的不足之处,采用经过优化后的C3k2组件替代原有部分。该方法能够有效改善特征图的空间分辨率,并增强了对于复杂场景下目标物体的理解能力[^3]。 ```python from torchvision import models def create_c3k2_block(): c3k2_module = ... # 创建C3k2模块的具体实现 return c3k2_module ``` #### 3. 整体框架调整 通过对上述两种技术的有效整合,形成了全新的YOLOv11-Pose模型。此版本特别适用于人体姿态估计等领域内的高难度任务需求。具体来说: - **骨干网改造**:利用预训练权重初始化新加入的DCNv4单元; - **颈部设计变更**:增加额外路径连接各尺度间的信息传递; - **头部重构**:基于改进型C3k2构建更加灵活高效的预测机制; 最终得到一个既保持轻量化特性又具备出色泛化性的解决方案[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值