Mobile Networks and Applications SCI 4区 2021
摘要
由于其广泛的覆盖范围和低传输延迟特性,低地球轨道(LEO)卫星网络已成为一种有价值的架构。利用LEO卫星作为边缘计算节点,为接入终端提供可靠的计算服务,将是集成空间-空中-地面网络不可或缺的范式。然而,考虑到不同接入平面和终端的资源需求,边缘计算卫星(ECS)的资源分配策略设计并非易事。此外,为了建立ECS在紧急情况下的协作网络,需要全面分析网络拓扑、可用资源和相对运动。为了解决这些问题,本文提出了一个结合软件定义网络(SDN)模型的三层网络架构,以指导卫星间链路(ISL)连接和ECS资源调度。分别提供了先进的K-means算法(AKG)和基于广度优先搜索的生成树算法(BFST),以实现ECS资源分配和ISL构建。模拟结果表明,所提出的动态资源调度方案是可行且有效的。
关键词:边缘计算、LEO卫星网络、资源调度、卫星间链路、软件定义网络
1.背景
LEO重要:LEO(低地球轨道)星座网络因其低延迟、高容量、全面覆盖和易于管理的特点,在空间-空中-地面综合通信网络(天地空一体)中扮演着越来越重要的角色。
R:相比于GEO(地球静止轨道)卫星约500毫秒的通信延迟,LEO星座能够提供更快速的通信服务,并覆盖GEO卫星或地面基站难以到达的地区,如极地、沙漠和海洋。-->全球网络覆盖
边缘计算:在非常接近智能终端的互联网边缘拥有足够的计算和存储资源。
大背景:SpaceX、OneWeb、LeoSat等公司正在开发自己的LEO星座,以抢占近地空间资源。
< 在LEO星座中,每颗卫星都可以为其覆盖范围内的终端提供通信服务;对于不在覆盖范围内的通信目标,可以通过星间链路实现跨域通信。> 随着智能终端的发展,通信数据类型已经从语音和文本扩展到图像、视频,可能还包括使用VR和AR技术的数据。加之特殊功能终端(如无人机和智能传感器)数量的增加,使得对实时数据处理的需求日益增长。现:地面指挥中心和LEO卫星之间的数据传输难以满足终端低延迟的计算。为了提高LEO卫星处理大量终端接入时的快速数据处理能力,关注LEO星座与边缘计算范式的融合,以增强智能终端的实时管理。
引入ECS(边缘计算卫星):将边缘服务器部署在LEO卫星上使LEO卫星变成边缘计算卫星,在ECS上安装终端数据处理模块,终端利用ECS的计算资源实现数据分析并接受ECS的统一调度。地面指挥中心更多的是负责存储处理结果和进一步的大数据分析。
ECS可以做什么:1、ECS的计算资源可以拆分为不同规格的基于KVM的虚拟机,实现对各种终端的数据处理。2、ECS可以形成协同网络,实现信息共享和统一的跨域终端调度。
ECS存在的问题:1.由于LEO卫星的运动速度相对较快,其下一个时隙的拓扑结构和覆盖范围可能会发生变化,导致ECS资源的重新配置。重新配置所导致的资源和时间花费可能会影响ECS实时数据处理。2.面对突发事件,ECS网络资源调度和信息共享的路由策略也待解决。
所以,需要ECS网络中的动态资源调度的方案,帮助ECS实现对智能终端的实时数据处理------->主要挑战:如何对每个接入终端进行快速的资源分配(卫星网络的资源调度)
已有工作:
1.考虑了GEO和LEO中继卫星的协同机制,提出了LEO卫星网络中GEO中继的多址接入和资源分配策略 。但是没有考虑GEO卫星的传输延迟高,往返时间约500ms,可能会影响终端的实时管理。
2.提出了一种基于LEO卫星架构的资源分配方法,以降低终端的高多普勒频移值。虽然减少了LEO星座的性能退化,但是在一定程度上没有解决LEO星座的动态资源分配问题。
3.提出了一种基于多agent的LEO卫星网络建模方法。卫星被建模成自主代理,可以与其他卫星代理协作。代理的任务被分配建模成分布式约束优化问题。但是自组织网络可能会影响其他卫星,造成不必要的链路拥塞。
4.提出一个软件定义模型来管理和编排LEO网络中的网络、缓存和计算资源。将联合资源分配问题表述为联合优化问题,使用deep Q-leanrning 来解决。
5.构建了一种新颖的图模型来描述卫星网络中的多维资源的演化。提出了一种最优资源配置策略,以促进各种资源之间的高效合作。
现有研究的不足: 尽管已有一些关于资源分配和多ECS协作的研究,但在动态资源调度和紧急情况下的协作工作方面,仍有待进一步解决。
本文提出的解决方案: 论文提出了一个基于SDN(软件定义网络)的ECS网络架构,以实现全球覆盖,采用覆盖范围广的GEO卫星作为SDN控制器,实现对LEO星座的实时控制。部署在ECSs中的边缘服务器主要负责覆盖区域内智能终端的数据处理。在终端接入时,ECS承载的聚类算法可以对不同终端的资源需求进行分类,实现对计算资源的精确划分,并在紧急情况下实现资源的动态分配和调度。
2、 边缘计算卫星网络架构
LEO卫星层的优势:
1.在LEO卫星层 ,LEO星座实现了对地球的全球覆盖,提供通信服务,特别是在地面基站无 法建设的偏远陆地和海洋。为了实现恶劣自然条件下的实时数据处理和终端控制,将边缘计算范式 应用于LEO卫星 ,形成边缘计算卫星ECS。
2.利用边缘服务器的计算能力,终端数据可以直接实时地在ECS上进行分析和反馈,而无需传 输到地面数据中心。这对于部署在无人地带的无人机、舰船和传感器上的智能终端具有显著的优势 。
3.边缘服务器是可编程的,可以手动开发和更新各种应用服务,以应对不同类型的终端 。
3 数学模型
3.1边缘控制卫星的资源分配
总述:使用先进的K-means算法(AKG)对终端进行聚类,以指导虚拟机(VM)资源的分配。
终端根据其对延迟、带宽和连接时间的敏感性被分为三类:延迟敏感型、带宽敏感型和连接时间敏感型。这种分类有助于更精确地分配资源。
最后,终端指标集可以表示为X:X ={x1,x2,x3}
,三维向量,用来表示终端i的敏感性特征。
为了实现终端聚类,Disij被定义为同一聚类中终端的欧几里得距离:
假设已分类的聚类是{C1, C2, ...Cn},同一聚类中的平均距离Dis可以表示为:
则同一聚类中终端的标准差SDi为:(越小相似性越高)
目标函数:
每个维度数据的平方均值用来生成初始聚类中心:
初始坐标是(Dsq, 0, 0)、(0, Bsq, 0)和(0, 0, Tsq)。使用先进的K-means算法(AKG)按以下步骤对终端进行聚类:
步骤1. 选择(Dsq, 0, 0)、(0, Bsq, 0)和(0, 0, Tsq)作为三个聚类的中心;
步骤2. 计算剩余终端{x1, x2, ...xn}到每个聚类中心的距离,并将这些终端归类到最近的聚类 中心;
步骤3. 分别计算每个聚类中终端的Disij平均值,并将其指定为新的聚类中心。
步骤4. 重复步骤2和步骤3,直到达到阈值或聚类中心不再变化。
3.2动态调整
核心:当一个ECS在其控制周期结束时,它可以将其资源分配配置传输给下一个将要服务相同地区的ECS。这样,下一个ECS可以利用这个参考配置作为初始点,而不必从头开始进行资源分配的计算。这种方法可以减少不必要的计算开销,并加快资源分配的调整速度,以适应不同地区的特定需求。
R:在两层卫星网络中,GEO卫星作为SDN控制器,可以获得网络拓扑和ECSs信息的全局知识。每个ECS轨迹是固定的---->整个卫星网络的拓扑结构周期性变化---->ECS在地球的某个区域也会周期性变化。
设ECS机队为X = (x1,x2,...,xm),xi的控制时间为ti:x1 = t1, x2 = t2,x3 = t3,...,xm = tm
整个控制期
意味着卫星xi将在Pe时间后再次成为该地区的ECS。这种周期性的运动可以保证对终端的连续控制。最后一个ECS可以将其配置提供给下一个ECS作为参考。利用GEO控制器,在ti结束时将当前的资源划分配置转移到下一个ECS进行初始资源分配,下一个ECS只需要在得到的配置基础上进行小的调整。
3.3 ECS协作
总述:紧急情况下ECS之间的协作非常重要,本文提出了一种基于SDN的动态资源调度方案,以实现快速、高效的应急响应。通过优化ISL的建立和利用BFST算法,提高了ECS网络在紧急情况下的数据处理能力和资源调度效率。
R:通常情况下,每个ECS负责管理一定区域的终端,终端将计算单元传送给ECS,ECS利用其数据处理能力实现区域控制。但是,面对一些大规模突发事件(风暴海啸等),单个ECS有限的计算单元可能无法在短时间内计算出大规模终端调度的有效响应。且一个ECS执行区域的终端调度方案可能与其他的ECS发生冲突,造成意外和拥堵。
所以,在大规模突发事件发生时,有必要对可能受到影响的终端进行统一调度。这里使用ECS协作实现。
地面数据中心的作用:
地面数据中心拥有强大的数据处理能力,能够快速进行实时数据的处理和分析。在紧急情况下,数据中心可以迅速制定应对策略,并将不同的应急响应发送给相应的ECS。
利用ECS合作进行快速应急反应的核心: 在特定的ECS之间快速形成isl,用于数据传输。
本文使用BFST。
4.结果
实验设置:利用卫星工具包(STK)模拟器参考铱星星座在预设的两层卫星网络上进行仿真。卫星和轨道参数设置为:






