一、Doppler定位理论支持:
- 近年来,近地轨道卫星(LEO)通信星座,如(Starlink、OneWeb)得到快速发展,这些宽带互联网卫星将数以千计地加入低轨星座,与GNSS MEO卫星相比,低轨卫星在信号强度、测距几何形状变化快和接收频率具有较大的多普勒频移等方面具有显著优势。这些理想的有优势有望在GNSS具有挑战的领域(如:城市峡谷和室内等场景)起到不可替代的作用,因此LEO星座被认为是一种有系统替代定位、导航和授时(PNT)资源。
二、Doppler定位公式推导
- 1.定义:多普勒效应是由发射机与接收机的相对运动引起的
- 2.原始表达形式:
(1)
- Doppler:多普勒频移;
、
:分别是接收机和发射机的频率;
:发射机(如:卫星)和接收机在视线方向的相对速度幅度;
:光速;
:传播信号的波长;
- 3.如果卫星和接收机正向移动,多普勒频移为正,反之,则多普勒频移未负。
也被称为伪距率:
(2)
:分别为卫星和接收机速度向量;
:分别为卫星和接收机位置向量;
:为伪距率(即伪距对时间的一阶导数)
- 4.伪距与伪距率方程表达式:
(3)
:相对论效应引起的钟差偏移量;
:Sagnac效应项(电磁信号在地球旋转参考系中的传播影响);
(4)
:分别是接收机和卫星钟差漂移;其他参数类推;
- 以上可以整体了解解算多普勒时的方程表达式的由来;后续将重点介绍公式(4)
- 5.(4)中的卫星速度、位置和钟漂可以从低轨卫星导航星历中获取,若初始接收机位置、速度和钟漂为
,将方程线性化后:
(5)
:分别表示初始伪距和伪距率;
:表示卫星与接收机的相对速度,y、z方向类推;
:为接收机指向卫星的方向余弦。
三、Doppler定位解算矩阵
- 1.假设当前历元观测到m颗卫星,采用最小二乘解算(LSM),矩阵形式如下:
(6)
:相对于初始值的偏差量,最终解算结果是两者之和;式中设计矩阵的表达形式如下:
(7)
- (7)中具体表达式推导见公式(5)
- 2.最终方程解表达式:
(8)
- W:权阵,它通常被转换为多普勒测量误差协方差矩阵的倒数。以上可解算出接收机位置、速度、钟漂等参数。
四、Doppler定位难点讨论
- 1.由于低轨卫星一般分布在1200km及以下的轨道上,故无法像GNSS卫星一样,即使坐标初值设为地球球心均可以获得解算结果,低轨卫星轨道高度较低,相对于地球半径所占误差比例较高,因此一般需要获得一定精度的初始坐标才能LSM才能获得解算结果。
- 2.那么如果需要实际应用,获得低轨卫星初值的方法?具体有哪些?笔者目前知晓利用卫星星下点组成的格网来归算初始位置,但该方法计算量较大且精度不高。
- 3.传统大气改正模型对LEO定位不一定适用,那么目前是否有相关模型修改或支持呢?另外笔者了解到Nequick模型对低轨卫星较为实用,大家可尝试使用。
- 4.欢迎评论区讨论!!!
五、参考文献
- [1]Anderle RJ (1979) Accuracy of geodetic solutions based on Doppler
measurements of the Navstar global positioning system satellites.Bull Géod 53(2):109–116
-
[2]Revisiting Doppler positioning performance with LEO satellites