自动标注工具AutoLabelImg的安装、部署及使用,支持yolov8、yolov9、yolov10、RT-DETR

github项目地址:https://github.com/datnguyen-tien204/VAL-AutoLabelImg/tree/main
基本上可以直接按照项目里的README去安装。

自动标注工具AutoLabelImg安装部署及使用,支持yolov8、yolov9、yolov10、RT-DETR

以下是本人的安装和使用步骤:
Windows + Anaconda
个人配置:NVIDIA GTX 4060 + cuda12.1

代码拉取

将github上的代码拉取至本地,或者直接使用附件中我上传的源码

git clone https://github.com/datnguyen-tien204/VAL-AutoLabelImg.git

安装:

创建虚拟环境,python的版本需要大于3.8,小于3.10,不然可能会有数据格式不兼容的问题

conda create -n autolabel python=3.8.19

激活虚拟环境

conda activate autolabel

拉取的源码中,VAL-AutoLabelImg\VAL_LabelImgs路径下有一个requirements.txt文件,cd到该路径运行下面的命令进行安装(加上清华源下载安装起来就非常快)

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/

安装完之后可能会有如下报错:
ERROR: To modify pip, please run the following command:
D:\anaconda\envs\autolabel\python.exe -m pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/

可以把requirements.txt中pip==24.0这行删掉,再重新执行pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/就可以成功安装。

继续执行以下命令:

pip install VAL-LabelImgs
pyrcc5 -o libs/resources.py resources.qrc

至此,安装完成。

使用

简单使用:

cd到VAL-AutoLabelImg\VAL_LabelImgs\目录下,执行

python mainapp.py

会出现软件界面
在这里插入图片描述
点击Open Dir 按钮选择VAL-AutoLabelImg\VAL_LabelImgs\imgs_input文件夹。
点击Change Save Dir 按钮选择VAL-AutoLabelImg\VAL_LabelImgs\save_dir文件夹。
会出现imgs_input文件夹中的图片
在这里插入图片描述
最后点击Auto Label All 按钮,在弹出的对话框中下拉选择All images,点击OK
在这里插入图片描述

继续选择custom-weights,点击OK
在这里插入图片描述
选择VAL-AutoLabelImg\models路径下的yolov8s.pt作为模型,继续选择VAL-AutoLabelImg\VAL_LabelImgs路径下的coco.yaml作为配置文件,选择完成之后就会对VAL-AutoLabelImg\VAL_LabelImgs\imgs_input文件夹中所有的图片进行自动标注。
标注结果和终端运行如下图所示
在这里插入图片描述
在这里插入图片描述

加载自己的模型和配置文件使用

首先需要关掉软件界面,然后修改一些配置文件即可:
1、本人使用的目标检测模型有10个类别,所以需要修改VAL-AutoLabelImg\VAL_LabelImgs路径下default_imgs.yaml文件内容中的classes为:

classes:
- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9

2、修改VAL-AutoLabelImg\VAL_LabelImgs\coco路径下classes.txt的内容为:

pedes
car
bus
truck
bike
moto
tricycle
coni
warn
tralight

3、增加自己模型对应的配置文件。比如本人使用的目标检测模型有以下10个类别,所以配置文件my_data.yaml的内容为:

nc: 10
# class names
names: ['pedes', 'car', 'bus', 'truck', 'bike', 'moto', 'tricycle', 'coni', 'warn', 'tralight']

完成上面3步之后,重新运行下面命令打开软件

python mainapp.py

按照简单使用里的步骤,加载自己的图片路径、模型、yaml文件,即可实现自动标注,效果如下
在这里插入图片描述

autolabelimg工具: 根据输入的待定位图片\rtmp流\capture来完成自动定位,生成xxx_pos.jpg和xxx_pos.xml。 生成的图片和xml定位文件可以被标注工具labelimg解析(兼容)。 如果定位成功,则会弹出标注后的图片。如果失败,则不会弹出图片。 特点: 1. 支持静态图片/rtmp视频流/本机video设备作为输入源。 2. 按扑克游戏类型进行特定标注标注的顺序号符合游戏解析定位文件的要求。 支持的游戏类型:龙虎,牛牛,百家乐。 3. 支持1280x720与1920x1080分辨率。 源代码列表:autolabel.cpp/.h,labelmain.cpp,tinyxml2.cpp/.h 第三方lib: opencv 程序编译(vs2015/vs2019): 1>------ 已启动生成: 项目: autolabelimg, 配置: Release x64 ------ 1>autolabel.cpp 1>labelmain.cpp 1>tinyxml2.cpp 1>正在生成代码 1>586 of 589 functions (99.5%) were compiled, the rest were copied from previous compilation. 1> 21 functions were new in current compilation 1> 0 functions had inline decision re-evaluated but remain unchanged 1>已完成代码的生成 1>autolabelimg.vcxproj -> D:\wincpp\gitwork\autolabelimg\x64\Release\autolabelimg.exe 1>已完成生成项目“autolabelimg.vcxproj”的操作。 Demo: 两张pocker时生成的定位文件 <annotation> <filename>images\b21(1920x1080)_pos.jpg</filename> <size> <height>1080</height> <width>1920</width> </size> <object> <name>card_1</name> <bndbox> <ymax>864</ymax> <xmax>627</xmax> <ymin>493</ymin> <xmin>213</xmin> </bndbox> </object> <object> <name>card_2</name> <bndbox> <ymax>833</ymax> <xmax>1715</xmax> <ymin>468</ymin> <xmin>1305</xmin> </bndbox> </object> </annotation>
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值