数据挖掘实战-基于长短期记忆网络(LSTM)的黄金价格预测模型 | 97% 准确度

### 构建黄金价格预测模型 #### 数据准备 为了构建有效的随机森林模型,数据集的质量至关重要。对于黄金价格预测,通常会收集历史价格、宏观经济指标和其他可能影响金价的因素作为特征变量[^3]。 ```python import pandas as pd from sklearn.model_selection import train_test_split # 假设已经有一个DataFrame df包含了日期索引以及各种特征列和目标列'price' df = pd.read_csv('gold_prices.csv', parse_dates=['date'], index_col='date') # 特征选择 features = ['feature_1', 'feature_2'] # 替换为实际使用的特征名称 X = df[features].values y = df['price'].values # 划分训练集与测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` #### 模型建立 使用 `sklearn` 库中的 `RandomForestRegressor` 类来创建并配置随机森林回归模型。通过调整超参数如树的数量 (`n_estimators`) 和每棵树的最大深度 (`max_depth`) 来优化性能[^1]。 ```python from sklearn.ensemble import RandomForestRegressor model = RandomForestRegressor(n_estimators=100, max_depth=None, min_samples_split=2, random_state=42) # 训练模型 model.fit(X_train, y_train) ``` #### 预测与评估 完成训练后,可以利用该模型对未来的价格做出预测,并对比真实值来进行误差分析。这里采用均方根误差 (RMSE) 作为一种衡量标准[^2]。 ```python from sklearn.metrics import mean_squared_error import numpy as np predictions = model.predict(X_test) rmse = np.sqrt(mean_squared_error(y_test, predictions)) print(f'The RMSE of the prediction is {rmse:.2f}') ```
评论 90
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾派森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值