👨🎓个人主页:研学社的博客
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
文献来源:
摘要:本文研究了无线网络的最优无人机(UAV)放置问题。无人机作为飞行无线中继运行,为基站(BS)提供覆盖范围扩展,并为被障碍物遮蔽的用户提供容量提升。虽然现有方法依赖于统计模型来阻止直接传播链路,但我们提出了一种能够利用局部地形信息来提供性能保证的方法。所提出的方法允许在最小化到地面终端的传播距离和发现良好的传播条件之间取得最佳权衡。该算法只需要几个传播参数,但它能够避免深度传播阴影,并被证明可以找到全局最优的无人机位置。只需要对目标区域进行局部探索,搜索轨迹的最大长度与地理范围成线性关系。因此,它适合在线搜索。与其他基于统计传播模型的定位方法相比,吞吐量显著提高。
原文摘要:
Abstract:
This paper studies the optimal unmanned aerial vehicle (UAV) placement problem for wireless networking. The UAV operates as a flying wireless relay to provide coverage extension for a base station (BS) and deliver capacity boost to a user shadowed by obstacles. While existing methods rely on statistical models for potential blockage of a direct propagation link, we propose an approach capable of leveraging local terrain information to offer performance guarantees. The proposed method allows to strike the best trade-off between minimizing propagation distances to ground terminals and discovering good propagation conditions. The algorithm only requires several propagation parameters, but it is capable to avoid deep propagation shadows and is proven to find the globally optimal UAV position. Only a local exploration over the target area is required, and the maximum length of search trajectory is linear to the geographical scale. Hence, it lends itself to online search. Significant throughput gains are found when compared to other positioning approaches based on statistical propagation models.
无线通信网络面临的一个重大挑战是对高数据速率和低延迟无线服务的需求快速增长。作为未来通信网络的一个有前途的解决方案,利用无人机作为飞行中继在通信中断时将BS与用户连接起来已经引起了极大的关注[1]-[7]。
在密集的城市环境中进行无人机中继时,一个根本的挑战是用户侧的阴影,其中阻塞程度取决于地理环境。例如,当无人机位于建筑物的东侧时,无人机与用户之间的联系可能处于深阴影中,而当无人机移动到北侧时,传播条件可能会得到显着改善。在将无人机物理飞行到目标位置进行评估之前,很难知道这种细粒度的传播条件。对可能的障碍进行建模的现有技术包括指定更大的路径损耗指数,添加额外的功率损耗,以及构造描述阴影统计信息的随机变量。然而,这些模型仍然过度简化了实际传播,因为它们隐含地假设障碍程度在任何地方都是均匀的,这意味着在相同的传播距离(和仰角)下,路径损耗在统计上是相同的。因此,在BS-UAV用户中继网络中,这些模型将预测BS用户轴上的最佳无人机中继。然而,在现实中,无人机可能会在BS用户轴上找到明显更好的传播条件。我们将证明,当利用更现实的细粒度传播模型时,可以实现实质性的性能提升。本文的主要目标是开发一种高效且阻塞自适应的搜索策略,以探索最优无人机位置的细粒度传播条件。
无人机优化策略主要基于特定的空对地路径损耗模型开发。在[8]–[16]中,路径损耗被建模为无人机到用户距离的确定性函数,与特定的无人机位置无关。由于这些基于距离的模型的简单性,[8]-[12]开发了无人机导航问题的解决方案,[13]研究了与具有多个天线的无人机的多输入多输出(MIMO)通信的优化策略,并[14]优化了无人机位置以进行协作通信。[8]-[16]中使用的模型意味着在相同的距离下路径损耗是相同的,但[17],[18]中更详细的研究表明,空对地传播也应取决于无人机-用户链路的仰角。
为了捕捉障碍物对仰角的依赖性,在[17]–[21]中,将路径损失建模为传播距离和仰角的随机变量。具体而言,对于[18]–[20]中研究的无人机位置和覆盖优化问题,将路径损耗建模为LOS情况下路径损耗的平均值,在NLOS情况下,仰角越大,LOS概率越高。这项工作[21]将阴影统计视为仰角的函数。然而,这些模型隐含地假设,对于相同的距离和仰角,阻塞程度是均匀的。然而,在实践中,梗阻程度可能因地点而异。
📚2 运行结果
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]J. Chen and D. Gesbert, "Efficient Local Map Search Algorithms for the Placement of Flying Relays," in IEEE Transactions on Wireless Communications, vol. 19, no. 2, pp. 1305-1319, Feb. 2020, doi: 10.1109/TWC.2019.2952612.