💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
基于CEEMDAN-CNN-BiLSTM-Attention的负荷预测研究
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于CEEMDAN-CNN-BiLSTM-Attention的负荷预测研究
一、概述
负荷预测是电力系统中至关重要的任务,对电力系统的规划、调度和运维具有重要意义。然而,由于负荷数据往往呈现出高度的非线性和非平稳性,传统的预测方法难以达到理想的预测效果。本研究旨在提出一种基于CEEMDAN(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)、卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制(Attention)的负荷预测模型,以期提高预测精度和鲁棒性。
二、模型架构
1. 数据预处理
- 数据收集:从电力系统中获取历史负荷数据及相关影响因素(如天气、节假日等)。
- 数据清洗:处理缺失值、异常值等问题,确保数据的完整性和准确性。
- 数据归一化:将不同量纲的数据转换到同一尺度,以便于后续处理。
2. CEEMDAN分解
CEEMDAN作为一种改进的经验模态分解算法,通过添加自适应噪声,使分解结果更加稳定和准确。将原始负荷数据分解为多个本征模态函数(IMF)和一个残差分量。
3. 特征提取
- 对每个IMF进行特征工程:提取出对预测有用的特征。
- CNN层:构建卷积神经网络层,用于捕捉每个IMF的局部特征,如波动模式和趋势。
4. 时间序列建模
- BiLSTM层:在CNN层之后接入双向长短期记忆网络层,利用其双向性捕捉时间序列数据中的长期依赖关系。
- Attention层:在BiLSTM层之后引入注意力机制层,动态调整不同时间段或特征的重要性。
5. 模型训练与评估
- 选择合适的损失函数(如均方误差MSE)和优化算法(如Adam优化器)。
- 使用交叉验证等方法避免过拟合,同时调整网络结构和超参数以优化模型性能。
- 使用多种评估指标(如MSE、RMSE、MAE等)对预测结果进行评估。
三、实验与结果
1. 实验设置
- 数据集:采用《电力负荷预测数据2.xlsx》,使用前5个时刻数据预测未来一个时刻数据。
- 编程环境:Python 3.9,相关库包括pandas 2.2.0、matplotlib 3.8.2、setuptools 49.2.1等。
2. 实验结果
通过CEEMDAN分解后的负荷数据,每个IMF分别构建预测模型进行预测,最终将各分量的预测结果相加得到最终的预测值。实验结果表明,相较于单一模型(如LSTM、CNN-LSTM等),CEEMDAN-CNN-BiLSTM-Attention模型在预测精度上有显著提升。
评估指标 | 单一LSTM | CEEMDAN-LSTM | CEEMDAN-CNN-LSTM | CEEMDAN-CNN-BiLSTM | CEEMDAN-CNN-BiLSTM-Attention |
---|---|---|---|---|---|
MSE | 较高值 | 降低 | 进一步降低 | 更低 | 最低 |
RMSE | 较高值 | 降低 | 进一步降低 | 更低 | 最低 |
MAE | 较高值 | 降低 | 进一步降低 | 更低 | 最低 |
3. 案例分析
选择具体案例进行详细分析,展示模型在不同场景下的应用效果。例如,在节假日、极端天气条件下的预测效果,并分析模型的稳定性和适应性。
四、模型优势与局限性
1. 优势
- 多尺度特征提取:CEEMDAN和VMD的结合能够有效提取负荷数据中的多尺度特征。
- 长期依赖关系捕捉:BiLSTM能够捕捉时间序列数据中的长期依赖关系。
- 动态特征关注:Attention机制能够动态调整不同时间段或特征的重要性。
2. 局限性
- 数据依赖性:模型性能受数据质量影响较大,需要高质量、完整的数据集。
- 计算复杂度:模型复杂度较高,需要较强的计算资源支持。
- 过拟合风险:需要合理设置模型参数和训练策略,避免过拟合问题。
五、未来研究方向
- 模型优化:进一步改进网络结构、损失函数和训练算法,提高模型的预测精度和鲁棒性。
- 多源数据融合:结合多源数据(如气象数据、社会经济数据等),提高预测的全面性和准确性。
- 模型可解释性:提高模型的可解释性,让决策者能够理解和信任模型的预测结果。
- 实时预测系统:开发实时负荷预测系统,实现电力系统的动态调度和优化运行。
本研究提出了一种基于CEEMDAN-CNN-BiLSTM-Attention的负荷预测模型,并通过实验验证了其有效性。该模型为电力系统的负荷预测提供了新的思路和方法,具有较高的实际应用价值。
📚2 运行结果
部分代码:
table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2']) for i in range(n_out): # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标 actual = [float(row[i]) for row in Ytest] #一列列提取 # 从测试集中提取实际值。 predicted = [float(row[i]) for row in predicted_data] # 从预测结果中提取预测值。 mse = mean_squared_error(actual, predicted) # 计算均方误差(MSE)。 mse_dic.append(mse) rmse = sqrt(mean_squared_error(actual, predicted)) # 计算均方根误差(RMSE)。 rmse_dic.append(rmse) mae = mean_absolute_error(actual, predicted) # 计算平均绝对误差(MAE)。 mae_dic.append(mae) MApe = mape(actual, predicted) # 计算平均绝对百分比误差(MAPE)。 mape_dic.append(MApe) r2 = r2_score(actual, predicted) # 计算R平方值(R2)。 r2_dic.append(r2) if n_out == 1: strr = '预测结果指标:' else: strr = '第'+ str(i + 1)+'步预测结果指标:' table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%']) return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table # 返回包含所有评估指标的字典.
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]肖白,高文瑞.基于CEEMDAN-LSTM的空间负荷预测方法[J].电力自动化设备, 2023, 43(3):7.
[2]郭权杰.基于CEEMDAN-LSTM模型的短期负荷预测研究与应用[D].天津理工大学,2023.
[3]冯建强,宋昆仑.基于CEEMDAN-LSTM的桥梁变形时间序列预测研究[J].地理空间信息, 2023, 21(7):40-43.
[4]王清亮,代一凡,王旭东,等.基于ICEEMDAN-LSTM-BNN的短期光伏发电功率概率预测[J].西安科技大学学报, 2023, 43(3):593-602.
🌈4 Python代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取