基于遗传算法求解TSP和MTSP研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、引言

二、遗传算法基本原理

三、基于遗传算法求解TSP

四、基于遗传算法求解MTSP

五、实验结果与分析

六、结论与展望

📚2 运行结果

2.1 单旅行商问题的遗传算法

2.2 多旅行商问题

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

一、引言

TSP和MTSP是组合优化中的经典问题,具有广泛的应用背景。TSP要求一个旅行商从某个城市出发,经过所有城市且每个城市仅经过一次,最后回到出发城市,要求找出总路径最短的路线。而MTSP则是TSP的扩展,涉及多个旅行商从同一或不同城市出发,分别访问所有城市一次,且每个城市仅被一个旅行商访问,目标是使所有旅行商的总路径最短。遗传算法作为一种全局优化算法,在求解此类问题上具有独特的优势。

二、遗传算法基本原理

遗传算法是一种模拟自然选择和遗传机制的优化算法,通过选择、交叉和变异等遗传操作,使种群不断进化,最终逼近最优解。

  1. 编码:将问题的解表示为染色体(即个体),通常采用二进制或实数编码。
  2. 适应度函数:用于评估个体的优劣程度,通常取路径长度的倒数作为适应度值。
  3. 选择:根据适应度值选择优秀个体,使其有机会将基因传递给下一代。
  4. 交叉:对两个相互配对的染色体进行基因交换,生成新的个体。
  5. 变异:对个体的基因进行随机改变,以增加种群的多样性。

三、基于遗传算法求解TSP

  1. 编码方案:通常采用城市序号的排列作为染色体编码,表示旅行商经过的城市顺序。

  2. 适应度函数:取路径长度的倒数作为适应度值,路径越短,适应度越高。

  3. 遗传操作

    • 选择:采用轮盘赌选择、锦标赛选择等方法。
    • 交叉:采用部分映射交叉、顺序交叉等方法。
    • 变异:采用逆序变异、交换变异等方法。
  4. 算法流程:初始化种群,计算适应度值,进行选择、交叉和变异操作,生成新一代种群,重复迭代直到满足终止条件。

四、基于遗传算法求解MTSP

  1. 编码方案:MTSP的编码需要同时考虑多个旅行商和城市的分配。可以采用分段编码或混合编码等方式。

  2. 适应度函数:取所有旅行商路径长度之和的倒数作为适应度值。

  3. 遗传操作

    • 选择:采用最优保存策略,保留每代最优个体。
    • 交叉:设计适用于MTSP的交叉算子,如多点交叉、部分映射交叉等。
    • 变异:对个体的基因进行随机改变,以增加种群的多样性。
  4. 算法流程:与TSP类似,但需要考虑多个旅行商的路径优化和协调。

五、实验结果与分析

通过仿真实验,验证遗传算法在求解TSP和MTSP上的有效性。对比不同参数设置下的算法性能,分析算法的稳定性和收敛性。

六、结论与展望

总结遗传算法在求解TSP和MTSP上的优势和不足,提出改进算法的建议。展望遗传算法在组合优化领域的其他应用前景。

📚2 运行结果

2.1 单旅行商问题的遗传算法

2.2 多旅行商问题

部分代码:

% 多旅行商问题的遗传算法
% 20个城市,2条线路
clear,clc
close all
load city_distance.mat
load city_location.mat
City_Number=21;         %城市数量
Race_Number=200;        %种群数量
Iteration=200;          %迭代次数
P_Cross=0.6;            %交叉概率
P_Mutation=0.2;         %变异概率
race=zeros(Race_Number,City_Number+2);

for i=1:Race_Number                         %初始化种群
    temp=randperm(City_Number);
    route=[City_Number+1,temp,City_Number+1];
    route=ga_hamilton(route);         %使用改良圈算法优化初始种群

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]王海龙,周辉仁,魏颖辉.基于遗传算法的一类多旅行商问题研究[J].计算机应用, 2009, 29(1):119-122.DOI:10.3969/j.issn.1001-3695.2009.05.036.

[2]陈龙.基于遗传算法的约束性多TSP问题及其应用[J].重庆邮电学院学报:自然科学版, 2000, 12(2):4.DOI:CNKI:SUN:CASH.0.2000-02-017.

[3]张俐.基于小生境遗传算法的MTSP问题求解[J].系统工程, 2009, 27(7):3.DOI:CNKI:SUN:GCXT.0.2009-07-022.

🌈4 Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值