💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
考虑分时电价与电动汽车灵活性的微电网两阶段鲁棒经济优化调度研究
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
为了有效应对微电网中电动汽车集群建模的高度复杂性以及可再生能源发电输出固有的不确定性,我们精心构思并开发了一个创新的解决方案——一个深度融合电动汽车集群与多元化需求侧资源的两阶段鲁棒经济调度模型。这一模型旨在通过精细化的策略设计,优化微电网的资源配置,提升其运行效率与稳定性。
在模型的初步构建阶段,我们充分利用了虚拟储能技术的外特性,据此明确界定了电动汽车集群在功率与能量上的时间转移边界。这一步骤不仅为电动汽车的有效集群建模提供了坚实的理论基础,还为实现电动汽车作为分布式能源灵活参与电网调度开辟了新途径。随后,我们进一步构建了一个min-max-min架构的两阶段三层鲁棒优化模型,该模型广泛涵盖了电动汽车集群、储能系统、燃气轮机以及光伏电站等各类关键元素,充分考虑了它们的运行约束条件及相互之间的协同调控需求,从而确保整个微电网系统能够在复杂多变的工况下保持高效稳定运行。
在求解策略上,我们巧妙地运用了列约束生成算法,将原问题巧妙地拆解为主问题与子问题,通过迭代求解的方式,大幅降低了问题的求解难度。特别是,在子问题的处理上,我们创造性地利用KKT条件、强对偶性以及大M方法,成功地将原本复杂的max-min形式转换为更易求解的max形式,进一步提升了求解效率与准确性。
在实证部分,我们不仅验证了模型的有效性,还深入探讨了不同时段电价策略对电动汽车充放电行为的具体影响,以及鲁棒调节系数在优化调度结果中所起的关键调节作用。通过对比分析,我们发现基于最坏情境的两阶段鲁棒模型相较于传统确定性模型,在运行效能与经济性方面展现出了显著的优势。
此外,该模型在代码设计上同样独树一帜,采用了模块化与可扩展性的设计理念,使得模型不仅易于维护与升级,还具备良好的可移植性。我们为模型配备了详尽的文档资料,包括模型结构说明、案例分析以及使用指南等,使得研究人员或工程师只需进行简单的调整,即可将模型应用于实际项目或学术发表中。
值得一提的是,该模型还将两阶段鲁棒优化问题巧妙地转化为混合整数线性形式的主子问题结构,充分考虑了光伏出力及负荷需求的不确定性因素。通过灵活调整鲁棒调节系数,调度人员能够在确保系统安全稳定运行的同时,实现调度策略的保守度与经济性的最佳平衡。此外,我们还深入分析了新型分时电价策略(如高波动性、高均值且含峰值电价)对微电网经济性的深远影响,特别是电动汽车集群充放电行为的适应性调整,为未来微电网的智能化调度与可持续发展提供了有力的理论支撑与实践指导。
考虑分时电价与电动汽车灵活性的微电网两阶段鲁棒经济优化调度研究
一、分时电价在微电网调度中的作用及建模
分时电价(Time-of-Use, TOU)是微电网需求侧管理的关键工具,其核心在于通过电价差异引导用户调整用电行为,实现削峰填谷。研究表明:
- 峰谷电价差设计:合理划分峰、平、谷时段并设定电价比例至关重要。例如,中提出将全天划分为3个时段(峰、平、谷),通过电价差异激励用户转移负荷,降低峰谷差。峰谷电价比的优化需平衡电网经济性与用户满意度。
- 动态电价机制:部分研究(如)提出动态分时电价策略,根据实时供需调整电价,例如在微电网调度需求高峰期(如T-26至T38时间段)提供优惠电价,引导电动汽车(EV)灵活充放电。这种机制能更精准匹配可再生能源出力波动与负荷需求。
- 经济性影响:分时电价直接影响微电网购售电成本。通过对比考虑分时电价前后的储能调度发现,虽然储能建设成本增加,但系统总成本显著降低,原因是优化了峰时高价购电与谷时低价储能的充放电策略。
二、电动汽车灵活性特性及其调度潜力
电动汽车作为“移动储能单元”,其灵活性体现在充放电时间、功率可调性及与电网的双向互动(V2G):
- 负荷调节能力:无序充电会导致“峰上加峰”,但通过有序调度,EV可平抑负荷波动。例如,提出将EV作为灵活性资源,在实时调度阶段修正负荷预测偏差,降低峰谷差。
- 环境与经济协同:EV参与V2G可提升新能源消纳率。的双重激励模型(分时电价+碳配额)表明,EV在高峰时段放电可替代高碳电源,降低微电网碳排放并提升用户收益。
- 用户行为建模:需考虑用户充电紧迫性、电池损耗及响应电价弹性。例如,蒙特卡洛方法用于模拟EV充电需求分布,结合电池SOC(State of Charge)约束制定充放电计划。
三、两阶段鲁棒优化框架构建
针对分时电价与EV灵活性的不确定性(如风光出力波动、负荷预测误差),两阶段鲁棒优化模型分为日前预调度与日内再调度:
-
第一阶段(日前调度):
- 目标:最小化预期运行成本,包括分时电价下的购电成本、储能损耗、EV调度成本等。
- 决策变量:分时电价方案、EV充放电计划、储能充放电策略、分布式电源出力计划。
- 约束:EV充电需求(SOC目标)、储能容量、电网功率交互限值。
-
第二阶段(日内调度):
- 目标:应对最恶劣场景(如极端风光波动),调整调度计划以最小化实时运行成本。
- 灵活性资源调用:EV充放电功率动态调整、储能快速响应、需求侧负荷转移。
- 鲁棒性建模:采用min-max-min结构,外层优化确定分时电价与调度策略,内层优化模拟不确定性对系统的最劣影响。
四、关键模型与算法
-
多目标优化模型:
- 目标函数:经济成本最小化(购电成本、设备运维)、峰谷差最小化、用户满意度最大化。
- 双层优化结构:外层优化电网侧经济性,内层优化用户侧响应。
-
求解算法:
鲁棒优化工具:CCG(Column-and-Constraint Generation)算法解决两阶段鲁棒模型。
五、案例分析与应用效果
以运行结果为准。
-
仿真结果:
- 峰谷差降低:显示,考虑分时电价后微电网负荷曲线峰谷差减少,储能利用率提升。
- 经济性提升:的双重激励策略使微电网运行成本降低8.1%,用户收益增加。
- 碳减排效果:EV参与V2G后,微电网碳排放量减少15%-30%。
-
实际应用:
- 安科瑞充电桩云平台:通过物联网技术实现EV充电实时监控与分时电价策略动态调整,适用于居民区、商业区等多场景。
- 冀北电网分时电价模型:尖峰时段(18-21时)电价显著高于其他时段,引导EV避开高峰充电。
六、挑战与未来方向
- 实时电价过渡:当前分时电价仍需向动态实时电价发展,需结合区块链、AI技术实现更精细的供需匹配。
- 多主体博弈:微电网运营商、EV用户、配电网的利益协调需通过主从博弈或联盟博弈解决。
- 不确定性建模:风光出力与EV行为的随机性需结合随机规划与鲁棒优化,或引入机器学习预测模型。
七、结论
分时电价与EV灵活性的协同调度是微电网经济优化的核心。通过两阶段鲁棒优化框架,可有效应对不确定性,实现经济性、环保性与可靠性的多目标均衡。未来需进一步探索实时电价机制、多能源协同及跨微电网资源共享,推动微电网向高弹性、低碳化方向发展。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]刘一欣,郭力,王成山.微电网两阶段鲁棒优化经济调度方法[J].中国电机工程学报, 2018, 38(14):10.
[2]桑博,张涛,刘亚杰,等.期望场景下的并网型微电网两阶段鲁棒优化调度[J].中国电机工程学报, 2020.
[3]李鸿,朱继忠,董瀚江.考虑协变量因素的多能微电网两阶段分布鲁棒优化调度[J].中国电机工程学报, 2024(3).
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取