不同版本模型性能对比
不同版本对比
模型 尺寸 (像素) mAPbox 50-95 mAPmask 50-95 CPU ONNX 速度 (ms) A100 TensorRT 速度 (ms) 参数 (M) FLOPs (B)
YOLOv8n-seg 640 36.7 30.5 96.1 1.21 3.4 12.6
YOLOv8s-seg 640 44.6 36.8 155.7 1.47 11.8 42.6
YOLOv8m-seg 640 49.9 40.8 317.0 2.18 27.3 110.2
YOLOv8l-seg 640 52.3 42.6 572.4 2.79 46.0 220.5
YOLOv8x-seg 640 53.4 43.4 712.1 4.02 71.8 344.1
参数解释
模型: 这是模型的名称,YOLOv8n-seg, YOLOv8s-seg, 等等。YOLOv8是一个流行的目标检测和分割模型,不同的后缀(如n, s, m, l, x)表示不同的模型大小和复杂度。
尺寸 (像素): 这代表输入图像的分辨率。在这个表格中,所有模型都使用640像素的分辨率。
mAPbox 50-95: 这是衡量模型在目标检测任务中性能的指标,即平均精度(mean Average Precision)。数值越高,性能越好。
mAPmask 50-95: 这是衡量模型在实例分割任务中性能的指标。和mAPbox类似,数值越高代表性能越好。
CPU ONNX 速度 (ms): 这是模型在CPU上使用ONNX格式运行时的速度,以毫秒为单位。数值越低,速度越快。
A100 TensorRT 速度 (ms): 这是模型在NVIDIA A100 GPU上使用TensorRT优化后的运行速度,同样以毫秒为单位。
参数 (M): 这是模型的参数数量,以百万(M)为单位。参数数量通常与模型的复杂度和计算需求成正比。
FLOPs (B): 这是模型的浮点运算数,以十亿(Billion)为单位。这个指标反映了模型运行一次所需要的计算量。
不同模型说明
YOLOv8n-seg
特点:它是这一系列中最“轻量级”的模型,有最少的参数和计算需求。
适用场景:适合资源受限的环境,如低功耗设备或实时应用,其中速度比精度更重要。
考虑因素:牺牲了一定的准确性,特别是在更复杂的场景中。
YOLOv8s-seg
特点:比 YOLOv8n-seg 稍复杂,提供更好的性能和准确性。
适用场景:适合需要较高准确性但仍然关注速度的应用,例如中等规模的监控系统。
考虑因素:在保持相对较快的处理速度的同时,提供了更好的检测和分割效果。
YOLOv8m-seg
特点:中等复杂度的模型,提供更高的精度。
适用场景:适用于需要较高精度且有适当计算资源的场景,如高级监控系统或自动化检测系统。
考虑因素:需要更多计算资源,处理速度相对较慢。
YOLOv8l-seg
特点:较大的模型,提供高精度的检测和分割。
适用场景:适合高端应用,如高级研究项目或复杂的图像处理任务。
考虑因素:需要显著的计算资源,处理速度较慢,不适合实时应用。
YOLOv8x-seg
特点:系列中最复杂、最精确的模型。
适用场景:适用于对精度要求极高的场景,如专业级图像分析和研究。
考虑因素:对计算资源的需求极高,可能需要专业级的硬件支持。
训练
训练示意代码
from ultralytics import YOLO
# 加载模型
model = YOLO('yolov8n-seg.yaml').load('yolov8n-seg.pt') # 从YAML构建并转移权重
if __name__ == '__main__':
# 训练模型
results = model.train(data='coco128-seg.yaml', epochs=10, imgsz=512)
metrics = model.val()
这段代码使用了 Ultralytics 的 YOLO 库来实现一个 YOLOv8n-seg 模型的加载、训练和验证过程。首先,它从 ultralytics 库中导入 YOLO 类,这是一种用于目标检测任务的流行深度学习模型。接着,代码通过指定的 YAML 配置文件(yolov8n-seg.yaml)构建了一个 YOLOv8n-seg 模型实例,并加载了预训练的权重(yolov8n-seg.pt)。
在主程序部分,模型被配置为使用一个名为 coco128-seg.yaml 的数据集进行训练,这是 COCO 数据集的一个子集专门用于目标检测和分割任务。训练过程被设置为进行 10 个周期(epochs),并且输入图像的大小被设置为 512x512 像素。
最后,代码执行模型的验证过程,评估模型在独立的验证数据集上的性能。这通常涉及到计算诸如准确度、损失等关键性能指标。
————————————————