点击蓝字
关注我们,让开发变得更有趣
以下文章来源于OpenCV学堂
YOLOv8概述
YOLOv8是由Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本,它是一种尖端的、最先进的(SOTA)模型,建立在先前YOLO成功基础上,并引入了新功能和改进,以进一步提升性能和灵活性。YOLOv8可以在大型数据集上进行训练,并且能够在各种硬件平台上运行,从CPU到GPU。
YOLOv8特点
新的骨干网络:
YOLOv8采用了新的网络结构,这有助于提高模型的检测精度和速度。
Anchor-Free检测头:
与之前的版本相比,YOLOv8采用了无锚点(Anchor-Free)的检测头,这可以提高检测的准确性,尤其是在处理小尺寸物体时。
新的损失函数:
YOLOv8引入了新的损失函数,这有助于更好地平衡正负样本,提高模型在训练过程中的学习效率。
可扩展性:
Ultralytics没有将开源库命名为YOLOv8,而是直接使用 "ultralytics" ,这表明他们希望这个库不仅支持 YOLO 系列模型,还能支持其他类型的模型和任务,如分类、分割和姿态估计等。
多尺度模型:
YOLOv8提供了不同尺度的模型,如 Nano、Small、Medium、Large 和 Extra Large,以适应不同的硬件平台和应用场景。
正负样本分配策略:
YOLOv8采用了 Task-Aligned Assigner 正负样本分配策略,这是一种动态分配策略,可以根据训练过程中的样本特点动态调整权重
支持多种硬件平台:
YOLOv8可以在从 CPU 到 GPU 的各种硬件平台上运行,这使得它在实际部署时具有很高的灵活性。
YOLOv8对象检测
YOLOv8 是一款先进的目标检测模型,它继承了 YOLO 系列的快速和准确的特点,并在此基础上进行了改进。YOLOv8 采用了无锚框(anchor-free)的方法,去除了先验设置可能不佳带来的影响,并借鉴了 Generalized Focal Loss 和任务解耦的思想,分别学习 box 和 class,以及将 box 边框的学习从回归的形式更换成交叉熵的形式
YOLOv8实例分割
YOLOv8 增加了实例分割的功能,该模块借鉴了 YOLACT 的思想。实例分割是指在保持物体形状的同时区分不同的实例,这对于场景理解和物体识别非常重要
YOLOv8姿态评估
YOLOv8 还支持姿态评估任务,这通常涉及到对人体或动物等生物的姿态进行识别和定位。YOLOv8 通过专门的模型来处理这个任务,例如 yolov8n-pose.pt 就是一个预训练的姿态评估模型
YOLOv8 OBB
YOLOv8 OBB模型是YOLO系列中的一个变体,专门设计用于检测具有方向的边界框(Oriented Bounding Boxes,OBB)。这种模型能够更准确地识别有角度或旋转的物体,适用于航空影像、文本检测等领域,提高了检测的准确性并减少了背景噪声
YOLOv8 OBB模型能够检测具有特定角度的物体,这对于那些形状不规则或者需要考虑视角变化的物体检测尤为有用
相比传统的水平矩形边界框(Horizontal Bounding Boxes,HBB),OBB模型能够更好地适应物体的真实形状,从而提高检测的精确度。由于OBB模型能够更准确地定位物体,因此在复杂背景中也能有效减少误检和漏检
OpenVINO™
--END--
点击下方图片,让我们一起成为“Issues 猎手”,共创百万用户开源生态!
你也许想了解(点击蓝字查看)⬇️➡️ OpenVINO™ 2024.2 发布--推出LLM专属API !服务持续增强,提升AI生成新境界➡️ OpenVINO™ 助力 Qwen 2 —— 开启大语言模型新时代➡️ 揭秘XPU架构下AIGC的推理加速艺术--AI PC 新纪元:将 AI 引入 NPU,实现快速低功耗推理➡️ 隆重介绍 OpenVINO™ 2024.0: 为开发者提供更强性能和扩展支持➡️ 隆重推出 OpenVINO 2023.3 ™ 最新长期支持版本➡️ OpenVINO™ 2023.2 发布:让生成式 AI 在实际场景中更易用➡️ 开发者实战 | 介绍OpenVINO™ 2023.1:在边缘端赋能生成式AI➡️ 5周年更新 | OpenVINO™ 2023.0,让AI部署和加速更容易➡️ OpenVINO™5周年重头戏!2023.0版本持续升级AI部署和加速性能➡️ 开发者实战系列资源包来啦!
扫描下方二维码立即体验
OpenVINO™ 工具套件 2024.1
点击 阅读原文 获取最新版OpenVINO™2024.2
评论区已开放,欢迎大家留言评论!
文章这么精彩,你有没有“在看”?