大学毕业做音视频开发,月入20K,你呢,安卓开发项目实战

编码的终极目的,说白了,就是为了压缩。各种五花八门的视频编码方式,都是为了让视频变得体积更小,有利于存储和传输。

我们先来看看,视频从录制到播放的整个过程,如下:

首先是视频采集。通常我们会使用摄像机、摄像头进行视频采集。限于篇幅,我就不打算和大家解释CCD成像原理了。

采集了视频数据之后,就要进行模数转换,将模拟信号变成数字信号。其实现在很多都是摄像机(摄像头)直接输出数字信号。信号输出之后,还要进行预处理,将RGB信号变成YUV信号。

前面我们介绍了RGB信号,那什么是YUV信号呢?

简单来说,YUV就是另外一种颜色数字化表示方式。视频通信系统之所以要采用YUV,而不是RGB,主要是因为RGB信号不利于压缩。在YUV这种方式里面,加入了亮度这一概念。在最近十年中,视频工程师发现,眼睛对于亮和暗的分辨要比对颜色的分辨更精细一些,也就是说,人眼对色度的敏感程度要低于对亮度的敏感程度。

所以,工程师认为,在我们的视频存储中,没有必要存储全部颜色信号。我们可以把更多带宽留给黑—白信号(被称作“亮度”),将稍少的带宽留给彩色信号(被称作“色度”)。于是,就有了YUV。

YUV里面的“Y”,就是亮度(Luma),“U”和“V”则是色度(Chroma)。

大家偶尔会见到的Y’CbCr,也称为YUV,是YUV的压缩版本,不同之处在于Y’CbCr用于数字图像领域,YUV用于模拟信号领域,MPEG、DVD、摄像机中常说的YUV其实就是Y’CbCr。

image

▲ YUV(Y’CbCr)是如何形成图像的

YUV码流的存储格式其实与其采样的方式密切相关。(采样,就是捕捉数据)

主流的采样方式有三种:

1)YUV4:4:4;

2)YUV4:2:2;

3)YUV4:2:0。

image

具体解释起来有点繁琐,大家只需记住,通常用的是YUV4:2:0的采样方式,能获得1/2的压缩率。

这些预处理做完之后,就是正式的编码了。

5、视频编码的实现原理

==============================================================================

5.1 视频编码技术的基本原理

前面我们说了,编码就是为了压缩。要实现压缩,就要设计各种算法,将视频数据中的冗余信息去除。当你面对一张图片,或者一段视频的时候,你想一想,如果是你,你会如何进行压缩呢?

▲ 对于新垣女神,我一bit也不舍得压缩…

我觉得,首先你想到的,应该是找规律。是的,寻找像素之间的相关性,还有不同时间的图像帧之间,它们的相关性。

**举个例子:**如果一幅图(1920×1080分辨率),全是红色的,我有没有必要说2073600次[255,0,0]?我只要说一次[255,0,0],然后再说2073599次“同上”。

如果一段1分钟的视频,有十几秒画面是不动的,或者,有80%的图像面积,整个过程都是不变(不动)的。那么,是不是这块存储开销,就可以节约掉了?

▲ 以上图为例,只有部分元素在动,大部分是不动的

是的,所谓编码算法,就是寻找规律,构建模型。谁能找到更精准的规律,建立更高效的模型,谁就是厉害的算法。

通常来说,视频里面的冗余信息包括:

视频编码技术优先消除的目标,就是空间冗余和时间冗余。

接下来,就和大家介绍一下,究竟是采用什么样的办法,才能干掉它们。以下内容稍微有点高能,不过我相信大家耐心一些还是可以看懂的。

视频编码技术的实现方法

视频是由不同的帧画面连续播放形成的。

这些帧,主要分为三类,分别是:

1)I帧;

2)B帧;

3)P帧。

**I帧:**是自带全部信息的独立帧,是最完整的画面(占用的空间最大),无需参考其它图像便可独立进行解码。视频序列中的第一个帧,始终都是I帧。

P帧:“帧间预测编码帧”,需要参考前面的I帧和/或P帧的不同部分,才能进行编码。P帧对前面的P和I参考帧有依赖性。但是,P帧压缩率比较高,占用的空间较小。

▲ P帧

B帧:“双向预测编码帧”,以前帧后帧作为参考帧。不仅参考前面,还参考后面的帧,所以,它的压缩率最高,可以达到200:1。不过,因为依赖后面的帧,所以不适合实时传输(例如视频会议)。

▲ B帧

通过对帧的分类处理,可以大幅压缩视频的大小。毕竟,要处理的对象,大幅减少了(从整个图像,变成图像中的一个区域)。

如果从视频码流中抓一个包,也可以看到I帧的信息,如下:

我们来通过一个例子看一下。

这有两个帧:

好像是一样的?

不对,我做个GIF动图,就能看出来,是不一样的:

人在动,背景是没有在动的。

第一帧是I帧,第二帧是P帧。两个帧之间的差值,就是如下:

也就是说,图中的部分像素,进行了移动。移动轨迹如下:

这个,就是运动估计和补偿。

当然了,如果总是按照像素来算,数据量会比较大,所以,一般都是把图像切割为不同的“块(Block)”或“宏块(MacroBlock)”,对它们进行计算。一个宏块一般为16像素×16像素。

▲ 将图片切割为宏块

好了,我来梳理一下。

对I帧的处理,是采用帧内编码方式,只利用本帧图像内的空间相关性。对P帧的处理,采用帧间编码(前向运动估计),同时利用空间和时间上的相关性。简单来说,采用运动补偿(motion compensation)算法来去掉冗余信息。

要如何成为Android架构师?

搭建自己的知识框架,全面提升自己的技术体系,并且往底层源码方向深入钻研。
大多数技术人喜欢用思维脑图来构建自己的知识体系,一目了然。这里给大家分享一份大厂主流的Android架构师技术体系,可以用来搭建自己的知识框架,或者查漏补缺;

对应这份技术大纲,我也整理了一套Android高级架构师完整系列的视频教程,主要针对3-5年Android开发经验以上,需要往高级架构师层次学习提升的同学,希望能帮你突破瓶颈,跳槽进大厂;

最后我必须强调几点:

1.搭建知识框架可不是说你整理好要学习的知识顺序,然后看一遍理解了能复制粘贴就够了,大多都是需要你自己读懂源码和原理,能自己手写出来的。
2.学习的时候你一定要多看多练几遍,把知识才吃透,还要记笔记,这些很重要! 最后你达到什么水平取决你消化了多少知识
3.最终你的知识框架应该是一个完善的,兼顾广度和深度的技术体系。然后经过多次项目实战积累经验,你才能达到高级架构师的层次。

你只需要按照在这个大的框架去填充自己,年薪40W一定不是终点,技术无止境

频教程,主要针对3-5年Android开发经验以上,需要往高级架构师层次学习提升的同学,希望能帮你突破瓶颈,跳槽进大厂;

最后我必须强调几点:

1.搭建知识框架可不是说你整理好要学习的知识顺序,然后看一遍理解了能复制粘贴就够了,大多都是需要你自己读懂源码和原理,能自己手写出来的。
2.学习的时候你一定要多看多练几遍,把知识才吃透,还要记笔记,这些很重要! 最后你达到什么水平取决你消化了多少知识
3.最终你的知识框架应该是一个完善的,兼顾广度和深度的技术体系。然后经过多次项目实战积累经验,你才能达到高级架构师的层次。

你只需要按照在这个大的框架去填充自己,年薪40W一定不是终点,技术无止境

本文已被CODING开源项目:《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》收录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值