1.问题描述
一台设备价格为 P P P,运行过程中,每年维修费用是设备役龄 t t t 的函数,记为 C ( t ) C(t) C(t),新设备的役龄 t = 0 t = 0 t=0。旧设备出售的价格亦是设备役龄的函数,记为 S ( t ) S(t) S(t)。在 n n n年末,役龄为 t t t的设备残值为 R ( t ) R(t) R(t)。现有一台役龄为 T T T 的设备,在使用过程中,使用者每年都面临“继续使用”或“更新”的策略,希望 n n n年中总的费用最少。
出售旧固定资产与残值收入的区别
出售旧固定资产的收入,是指固定资产仍有使用价值,还可以继续使用,将其出售的收入.固定资产残值收入,是指固定资产已不能再继续使用,没有使用价值,将其分解后变卖铜、铁等废料的收入.
2.建模
阶段
k
k
k:服役年份;
状态变量
x
k
x_k
xk:截至到第
k
k
k年已经服役的年数(役龄)
t
t
t;
决策变量:
d
k
=
{
R
(
R
e
p
l
a
c
e
)
更新
K
(
K
e
e
p
)
继续使用
d_k=\begin{cases} R &(Replace)更新\\ K &(Keep)继续使用 \end{cases}
dk={RK(Replace)更新(Keep)继续使用
状态转移方程:
x
k
+
1
=
{
1
d
k
=
R
x
k
+
1
d
k
=
K
x_{k+1}=\begin{cases}1 &d_k=R\\x_k+1 &d_k=K\end{cases}
xk+1={1xk+1dk=Rdk=K
阶段指标:
v
k
=
{
P
+
C
(
0
)
−
S
(
x
k
)
d
k
=
R
(更换设备的话新设备花费
+
维修费
−
旧设备出售价)
C
(
x
k
)
d
k
=
K
(只考虑维修费)
=
{
P
+
C
(
0
)
−
S
(
t
)
d
k
=
R
C
(
t
)
d
k
=
K
v_k=\left\{\begin{array}{ll} P+C(0)-S(x_k) &d_k=R\\(更换设备的话新设备花费+维修费-旧设备出售价)\\ C(x_k) &d_k=K\\(只考虑维修费) \end{array}\right.\\ =\left\{\begin{array}{ll} P+C(0)-S(t) &d_k=R\\ C(t) &d_k=K \end{array}\right.
vk=⎩
⎨
⎧P+C(0)−S(xk)(更换设备的话新设备花费+维修费−旧设备出售价)C(xk)(只考虑维修费)dk=Rdk=K={P+C(0)−S(t)C(t)dk=Rdk=K
递推方程:(表示从第
k
k
k年开始往后服役了
x
k
x_k
xk年设备的最小花费)
f
k
(
x
k
)
=
m
i
n
{
P
+
C
(
0
)
−
S
(
x
k
)
+
f
k
+
1
(
x
k
+
1
)
d
k
=
R
C
(
x
k
)
+
f
k
+
1
(
x
k
+
1
)
d
k
=
K
=
m
i
n
{
P
+
C
(
0
)
−
S
(
t
)
+
f
k
+
1
(
1
)
d
k
=
R
C
(
t
)
+
f
k
+
1
(
t
+
1
)
d
k
=
K
f_k(x_k)=min\begin{cases}P+C(0)-S(x_k)+f_{k+1}(x_{k+1})&d_k=R\\C(x_k)+f_{k+1}(x_{k+1})&d_k=K \end{cases}\\ =min\begin{cases}P+C(0)-S(t)+f_{k+1}(1)&d_k=R\\C(t)+f_{k+1}(t+1)&d_k=K \end{cases}
fk(xk)=min{P+C(0)−S(xk)+fk+1(xk+1)C(xk)+fk+1(xk+1)dk=Rdk=K=min{P+C(0)−S(t)+fk+1(1)C(t)+fk+1(t+1)dk=Rdk=K
终端条件:(残值)
f
n
(
t
)
=
−
R
(
t
)
f_n(t)=-R(t)
fn(t)=−R(t)
案例求解
求解基本方程:
由上表开始,终端条件为:
f
6
(
1
)
=
−
25
,
f
6
(
2
)
=
−
17
,
f
6
(
3
)
=
−
8
,
f
6
(
4
)
=
f
6
(
5
)
=
f
6
(
7
)
=
0
f_6(1) = -25,f_6(2) = -17,f_6(3) = -8, f_6(4) = f_6(5) = f_6(7) = 0
f6(1)=−25,f6(2)=−17,f6(3)=−8,f6(4)=f6(5)=f6(7)=0不可能是6年。
k
=
5
:递推公式
k=5:递推公式
k=5:递推公式
f
5
(
t
)
=
m
i
n
{
P
+
C
(
0
)
−
S
(
t
)
+
f
6
(
1
)
d
5
=
R
C
(
t
)
+
f
6
(
t
+
1
)
d
5
=
K
f_5(t)=min\begin{cases}P+C(0)-S(t)+f_6(1)&d_5=R\\ C(t)+f_6(t+1)&d_5=K\end{cases}
f5(t)=min{P+C(0)−S(t)+f6(1)C(t)+f6(t+1)d5=Rd5=K
需讨论:役龄为1、2、3、4、6的情况
f
5
(
1
)
=
m
i
n
{
P
+
C
(
0
)
−
S
(
1
)
+
f
6
(
1
)
C
(
1
)
+
f
6
(
2
)
=
m
i
n
{
50
+
1
−
−
32
+
(
−
25
)
13
+
(
−
17
)
}
=
m
i
n
{
3
−
4
}
=
−
4
,
d
5
∗
=
K
f_5(1)=min\begin{cases}P+C(0)-S(1)+f_6(1)\\C(1)+f_6(2)\end{cases}\\ =min\left\{\begin{array}{ll}50+1--32+(-25)\\13+(-17)\end{array}\right\}\\ =min\left\{\begin{array}{ll}3\\-4\end{array}\right\}=-4, \quad d_5^*=K
f5(1)=min{P+C(0)−S(1)+f6(1)C(1)+f6(2)=min{50+1−−32+(−25)13+(−17)}=min{3−4}=−4,d5∗=K
回溯。将最优策略汇总:有两个解,它们对应的最小费用都是115。即: