设备更新问题

1.问题描述

一台设备价格 P P P,运行过程中,每年维修费用是设备役龄 t t t 的函数,记为 C ( t ) C(t) C(t),新设备的役龄 t = 0 t = 0 t=0。旧设备出售的价格亦是设备役龄的函数,记为 S ( t ) S(t) S(t)。在 n n n年末,役龄为 t t t的设备残值为 R ( t ) R(t) R(t)。现有一台役龄为 T T T 的设备,在使用过程中,使用者每年都面临“继续使用”或“更新”的策略,希望 n n n年中总的费用最少。

出售旧固定资产与残值收入的区别
出售旧固定资产的收入,是指固定资产仍有使用价值,还可以继续使用,将其出售的收入.固定资产残值收入,是指固定资产已不能再继续使用,没有使用价值,将其分解后变卖铜、铁等废料的收入.

2.建模

阶段 k k k:服役年份;
状态变量 x k x_k xk:截至到第 k k k年已经服役的年数(役龄) t t t;
决策变量:
d k = { R ( R e p l a c e ) 更新 K ( K e e p ) 继续使用 d_k=\begin{cases} R &(Replace)更新\\ K &(Keep)继续使用 \end{cases} dk={RK(Replace)更新(Keep)继续使用
状态转移方程:
x k + 1 = { 1 d k = R x k + 1 d k = K x_{k+1}=\begin{cases}1 &d_k=R\\x_k+1 &d_k=K\end{cases} xk+1={1xk+1dk=Rdk=K
阶段指标:
v k = { P + C ( 0 ) − S ( x k ) d k = R (更换设备的话新设备花费 + 维修费 − 旧设备出售价) C ( x k ) d k = K (只考虑维修费) = { P + C ( 0 ) − S ( t ) d k = R C ( t ) d k = K v_k=\left\{\begin{array}{ll} P+C(0)-S(x_k) &d_k=R\\(更换设备的话新设备花费+维修费-旧设备出售价)\\ C(x_k) &d_k=K\\(只考虑维修费) \end{array}\right.\\ =\left\{\begin{array}{ll} P+C(0)-S(t) &d_k=R\\ C(t) &d_k=K \end{array}\right. vk= P+C(0)S(xk)(更换设备的话新设备花费+维修费旧设备出售价)C(xk)(只考虑维修费)dk=Rdk=K={P+C(0)S(t)C(t)dk=Rdk=K
递推方程:(表示从第 k k k年开始往后服役了 x k x_k xk年设备的最小花费)
f k ( x k ) = m i n { P + C ( 0 ) − S ( x k ) + f k + 1 ( x k + 1 ) d k = R C ( x k ) + f k + 1 ( x k + 1 ) d k = K = m i n { P + C ( 0 ) − S ( t ) + f k + 1 ( 1 ) d k = R C ( t ) + f k + 1 ( t + 1 ) d k = K f_k(x_k)=min\begin{cases}P+C(0)-S(x_k)+f_{k+1}(x_{k+1})&d_k=R\\C(x_k)+f_{k+1}(x_{k+1})&d_k=K \end{cases}\\ =min\begin{cases}P+C(0)-S(t)+f_{k+1}(1)&d_k=R\\C(t)+f_{k+1}(t+1)&d_k=K \end{cases} fk(xk)=min{P+C(0)S(xk)+fk+1(xk+1)C(xk)+fk+1(xk+1)dk=Rdk=K=min{P+C(0)S(t)+fk+1(1)C(t)+fk+1(t+1)dk=Rdk=K
终端条件:(残值) f n ( t ) = − R ( t ) f_n(t)=-R(t) fn(t)=R(t)

案例求解

在这里插入图片描述

求解基本方程:
由上表开始,终端条件为:
f 6 ( 1 ) = − 25 , f 6 ( 2 ) = − 17 , f 6 ( 3 ) = − 8 , f 6 ( 4 ) = f 6 ( 5 ) = f 6 ( 7 ) = 0 f_6(1) = -25,f_6(2) = -17,f_6(3) = -8, f_6(4) = f_6(5) = f_6(7) = 0 f6(1)=25f6(2)=17f6(3)=8f6(4)=f6(5)=f6(7)=0不可能是6年。
k = 5 :递推公式 k=5:递推公式 k=5:递推公式
f 5 ( t ) = m i n { P + C ( 0 ) − S ( t ) + f 6 ( 1 ) d 5 = R C ( t ) + f 6 ( t + 1 ) d 5 = K f_5(t)=min\begin{cases}P+C(0)-S(t)+f_6(1)&d_5=R\\ C(t)+f_6(t+1)&d_5=K\end{cases} f5(t)=min{P+C(0)S(t)+f6(1)C(t)+f6(t+1)d5=Rd5=K
需讨论:役龄为1、2、3、4、6的情况
f 5 ( 1 ) = m i n { P + C ( 0 ) − S ( 1 ) + f 6 ( 1 ) C ( 1 ) + f 6 ( 2 ) = m i n { 50 + 1 − − 32 + ( − 25 ) 13 + ( − 17 ) } = m i n { 3 − 4 } = − 4 , d 5 ∗ = K f_5(1)=min\begin{cases}P+C(0)-S(1)+f_6(1)\\C(1)+f_6(2)\end{cases}\\ =min\left\{\begin{array}{ll}50+1--32+(-25)\\13+(-17)\end{array}\right\}\\ =min\left\{\begin{array}{ll}3\\-4\end{array}\right\}=-4, \quad d_5^*=K f5(1)=min{P+C(0)S(1)+f6(1)C(1)+f6(2)=min{50+132+(25)13+(17)}=min{34}=4,d5=K
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

回溯。将最优策略汇总:有两个解,它们对应的最小费用都是115。即:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

古道西风瘦码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值