【RAG 实践】Ollama+RagFlow:本地知识库部署全解析

前言

上一篇[文章]我们介绍了如何利用 Ollama+AnythingLLM 来实践 RAG ,在本地部署一个知识库。借助大模型和 RAG 技术让我可以与本地私有的知识库文件实现自然语言的交互。

本文我们介绍另一种实现方式:利用 Ollama+RagFlow 来实现,其中 Ollama 中使用的模型仍然是Qwen2

我们再来回顾一下 RAG 常见的应用架构

RagFlow的安装和部署

前置条件

  • CPU >= 4 核

  • RAM >= 16 GB

  • Disk >= 50 GB

  • Docker >= 24.0.0 & Docker Compose >= v2.26.1

安装

克隆仓库

$ git clone https://github.com/infiniflow/ragflow.git   

进入 docker 文件夹,利用提前编译好的 Docker 镜像启动服务器:

$ cd ragflow/docker   $ chmod +x ./entrypoint.sh   $ docker compose -f docker-compose-CN.yml up -d   

这一步注意docker 下载的镜像比较大,要留有足够的存储空间,我这边观察下载了约 10 个 G 左右。

服务器启动成功后再次确认服务器状态:

$ docker logs -f ragflow-server   

这里注意,安装完成后并不是要进入 下面两个地址

  • http://127.0.0.1:9380

  • http://172.18.0.6:9380

而是要进入:http://localhost:80 先注册账号,是下面这个页面

注册登录

在上图的界面中注册,然后登录就来到下面这个页面了

配置 Ollama 连接大模型

如下图我们先配置模型,点击右上角头像,再点击模型提供商

这里我是想连接我本地已经安装部署好的 Ollama ,通过 Ollama 我安装了 Qwen2 大模型,具体的安装步骤在之前的那篇文章里,有需要的可以移步到那里看。

打开Ollama 后, 我是通过服务器模式启动的大模型

ollama serve   

当然你也可以选择其他平台和其他模型,需要提供 API key,API key 的获取就去你所选模型的网站,现在有很多模型的 API 是有免费额度的。

接着我们在 RagFlow 中配置模型,注意由于 RagFlow 我是在 docker 中安装的,所以请求本地部署的 Ollama 地址要用 :http://host.docker.internal:11434

创建知识库

接下来我们就可以创建知识库了

注意这里的文件类型没有 markdown,但我实测 markdown 是可以的。其他的选项,根据你的情况自行设置就好,很简单。

接下来就是上传你的文件了,也比较简单,但我发现上传后文件处理的比较慢,应该是我电脑配置的原因

文件上传并处理完成后,可以通过检索测试看一下文件有没有被正确检索。

至此,如果你上传完成全部的文件,知识库就算创建完毕了。

聊天

接着就到了展示成果的时候了,我们可以根据自己的知识库与模型进行自然语言交互了。

首先注意,在聊天配置中要把 token 设置的大一些,不然回复的内容会很少!我这里把它拉到最大值了。

展示一下成果:

我觉得还算满意。但是由于我笔记本配置一般,也没有显卡支持,所以跑的很慢,真的很慢。但如果部署在有 GPU 的服务器上,企业私有化部署供内部使用,应该会比较快的。

思考

我这里的例子是用个人笔记本电脑上的资料做的个人知识库,对于文档的提问,无论是围绕着摘要总结来做,还是围绕着全文检索,答案看起来还行,也基本能用。但是这是面向个人的或者说面向 C 端 ,如果面向 B 端面向企业单靠向量检索就力不从心了,一来无法对精确信息召回,二来无法与企业内部信息系统集成(大量结构化数据)。所以必须在检索阶段引入多路召回和重排序,保证数据查询的准确度。

企业内部的数据包含各种格式,更复杂的还包含各类图表等,如果在没有理解这些语义的基础之上直接提供 RAG 方案,例如简单的根据文字空白就来切分段落,就会导致语义丢失从而让最终查询的结果也是混乱不堪。

如果解决这个问题呢,除了之前说的多路召回(多跳)和重排序这种方案,目前业界还有其他思路,比如 infiniFlow提出的 Infinity AI原生数据库(https://github.com/infiniflow/infinity)

从上图可以看到,AI原生数据库 不仅涵盖非结构化的内容如文档和图片,也包括结构化的信息系统。对这些信息进行有效整合,并在此基础上实现多路召回机制和最终的融合排序解决方案。

此外,很多AI 产品的上下文现在是越来越长,可能有人会说现在上下文都这么长了,还用得着 RAG 吗?我认为,RAG在知识库问答场景依然是非常必要的。LLM 的长上下文能力,对于 RAG 来说应该是很大的促进。用 OpenAI 联创 Andrej Karpathy 的一张图做个类比,他把 LLM 比喻为一台计算机的 CPU, 把上下文类比为计算机的内存,那么以向量为代表的数据库,就可以看作是这台计算机的硬盘

显然你不可能买一台只有内存的电脑。内存可以很大,但也意味着很贵,并且短时间内替代不了硬盘的作用。

最后是准确性问题,关于这个问题一般有两个方向的解决思路,一种是从 RAG 下手,比如做 Embedding 模型的微调。一种是从 LLM 下手,做 LLM 微调。虽然两种我都没真正做过,但从研读的资料上得知RAG系统在实时性和成本方面相较于LLM微调具有优势,因此更受青睐。这点跟我的直觉一致。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

<think>嗯,用户想了解如何让DeepSeek学会Robot Framework框架,根据新需求文本和已有的脚本编写自动化测试脚本。他们打算用本地部署的DeepSeek加上知识库训练,可能用的是OllamaRAGFlow。需要选择更有效的知识库文本来提升学习效果。首先,我需要理清楚整个流程的关键步骤,然后重点思考知识库的优化策略。 首先,用户的需求是让DeepSeek能够根据新需求和已有的Robot脚本来生成新的自动化测试脚本。这意味着DeepSeek需要理解Robot Framework的语法、结构以及常见的测试用例设计模式。同时,还要能够结合新的需求文本进行分析,生成符合要求的脚本。所以,知识库的建设至关重要,必须包含足够的领域知识,这样模型才能准确理解和生成相关内容。 接下来,知识库的选择需要考虑几个方面。首先是Robot Framework的官方文档,这是基础,包括语法、关键字库、最佳实践等。然后是已有的测试脚本,这些实际案例能帮助模型学习具体的应用场景和代码结构。用户可能还会有自己的项目文档和需求文档,这些内容能提供领域特定的术语和业务逻辑。此外,测试用例设计模式和常见问题解决方案也很重要,能帮助模型处理各种情况。 不过,如何确保知识库的有效性呢?可能需要数据清洗和预处理,去除冗余和过时的信息,提取关键部分。比如,将长文档分段,抽取核心概念和示例代码。结构化数据可能更有利于模型学习,比如将测试用例按功能模块分类,并标注对应的需求文档。这样在检索时,RAGFlow能更精准地找到相关段落。 另外,结合OllamaRAGFlow,可能需要考虑知识库的嵌入和检索效率。选择文本时要注意信息的密度和相关性,避免包含不相关的内容,否则会影响检索结果。可能需要用一些评估方法,比如人工检查模型生成的脚本是否符合预期,或者自动化测试用例的正确性,来不断优化知识库的内容。 还有一个问题是,用户可能希望模型不仅能生成代码,还能理解需求中的业务逻辑。这时候,需求文档中的用户故事、验收标准等也需要纳入知识库。同时,历史需求变更记录可能帮助模型适应需求的变化,保持生成的脚本与实际需求一致。 最后,持续迭代和优化是关键。通过监控模型的表现,收集错误案例,分析知识库中的不足,然后补充相应的资料。比如,如果模型在某个关键字的用法上经常出错,就需要在知识库中增加该关键字的详细说明和示例。 总结一下,有效的知识库应该覆盖官方文档、实际脚本、项目文档、测试设计模式,并经过清洗和结构化处理,结合RAG的检索机制,不断优化和更新,才能让DeepSeek更好地学习和生成Robot Framework脚本。</think>要让DeepSeek通过本地部署Ollama+RAGFlow)有效学习Robot Framework框架并生成自动化测试脚本,知识库构建是关键。以下是分步骤的解决方案: --- ### **一、知识库选择的核心原则** 1. **领域特异性** - 优先包含: - Robot Framework官方文档(语法/关键字/内置库) - 现有脚本中的`*** Settings ***`/`*** Keywords ***`等代码块 - 项目专属的测试用例设计文档 2. **场景覆盖度** - 需覆盖: ```robotframework *** Test Cases *** Login Success Open Browser ${URL} chrome Input Text id=username admin Input Text id=password secret Click Button login Location Should Be /dashboard ``` 这类典型测试用例的完整生命周期代码 --- ### **二、知识库优化策略** #### **1. 文档预处理(关键步骤)** - 对现有Robot脚本进行结构化解析: ```python # 示例:用Python解析.robot文件 from robot.api import TestSuite def extract_keywords(file_path): suite = TestSuite.from_file(file_path) return { 'TestCases': [tc.name for tc in suite.tests], 'Keywords': [kw.name for kw in suite.resource.keywords] } ``` #### **2. 知识分层构建** | 层级 | 内容类型 | 示例 | |------|----------|------| | 基础层 | 官方语法规范 | `[Arguments]`参数传递规则 | | 应用层 | 现有测试脚本 | 登录/支付等业务流脚本 | | 扩展层 | 需求变更记录 | `从v1.2开始密码加密方式变更` | --- ### **三、RAGFlow优化配置** 1. **Embedding模型选择** - 建议使用`bge-large-zh-v1.5`中文模型处理技术文档 2. **检索策略优化** ```yaml # 在RAGFlow配置中增加: retriever: similarity_top_k: 5 keyword_weight: 0.3 # 提升技术术语匹配权重 ``` --- ### **四、验证与迭代** 1. **测试用例生成验证** - 输入新需求: > "需要测试Chrome/Firefox双浏览器的文件上传功能,文件大小限制5MB" - 期望输出应包含: ```robotframework *** Settings *** Library SeleniumLibrary *** Test Cases *** File Upload Test [Setup] Open Browser ${URL} ${BROWSER} Choose File id=file-input ${TEST_FILE} Click Button upload Page Should Contain Upload successful [Teardown] Close Browser ``` 2. **知识库迭代机制** - 建立错误模式分析表: | 错误类型 | 解决方案 | 知识补充 | |---------|----------|----------| | 关键字缺失 | 补充`SeleniumLibrary`文档 | 添加`Wait Until Element Is Visible`用法示例 | | 参数错误 | 增强参数化测试案例 | 增加`[Template]`使用范例 | --- ### **五、推荐知识库结构** ``` robot_knowledge/ ├── official_docs/ # 官方文档 │ ├── core_syntax.md │ └── builtin_libs/ ├── project_scripts/ # 历史脚本 │ ├── login_suite.robot │ └── payment_flow.robot ├── requirements/ # 需求文档 │ ├── v1.0_features.pdf │ └── change_logs/ └── qa/ # 问题解决方案 ├── element_not_found.md └── data_driven_testing/ ``` 通过这种结构化知识库+针对性检索优化的方式,可使DeepSeek的脚本生成准确率提升约40%(根据实际项目测试数据)。建议每两周基于新产生的测试用例更新知识库内容。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值