模糊综合评价模型
模糊数学
现实世界中的许多现象和关系具有不确定性。这些不确定性的表现形式多种多样,如随机性、灰色性、模糊性和粗糙性等。
模糊数学正是利用模糊集及其运算研究、处理模糊不确定现象和关系的数学分支学科。
许多数学建模问题包括模糊现象和关系,这类问题往往可以用模糊数学方法处理。
模糊集
-
模糊集
现实中的许多现象及关系比较模糊。如高与矮,长与短,大与小,多与少,穷与富,好与差,年轻与年老等。
这类现象不满足“非此即彼”的排中律,而具有“亦此亦彼”的模糊性。
需要指出的是,模糊不确定不同于随机不确定。随机不确定是因果律破损造成的不确定,而模糊不确定是由于排中律破损造成的不确定。
定义 设给定论域 U ,所谓 U 上的一个模糊集 A 是指对于任意 x ∈ U ,都能确定一个正数 μ A ( x ) ∈ [ 0 , 1 ] 用其表示 x 属于 A 的程度。 映射 x ∈ U − > μ A ( x ) ∈ [ 0 , 1 ] 称为 A 的隶属函数,函数 μ A ( x ) 称为 x 对 A 的隶属度。 定义\quad设给定论域U,所谓U上的一个模糊集A是指对于任意x∈U,都能确定一个正数μ_A(x)∈[0,1]用其表示x属于A的程度。\\ 映射x∈U->μ_A(x)∈[0,1]称为A的隶属函数,函数μ_A(x)称为x对A的隶属度。 定义设给定论域U,所谓U上的一个模糊集A是指对于任意x∈U,都能确定一个正数μA(x)∈[0,1]用其表示x属于A的程度。映射x∈U−>μA(x)∈[0,1]称为A的隶属函数,函数μA(x)称为x对A的隶属度。
显然,每个元素都有隶属度的集合即为模糊集。确定模糊集的关键是构造隶属函数。 -
模糊集的运算
由于模糊集中没有元素和集合间的绝对隶属关系,所以模糊集的运算是通过隶属函数完成的。
设模糊集 A , B 的隶属函数为 μ A ( x ) , μ B ( x ) ,则 A 与 B 的常用运算有 ( 1 ) 包含: A ⊂ B ⇔ μ A ( x ) ≤ μ B ( x ) ( 2 ) 相等: A = B ⇔ μ A ( x ) = μ B ( x ) ( 3 ) 并: C = A ∪ B ⇔ μ C ( x ) = μ A ( x ) ∨ μ B ( x ) ( 4 ) 补: A C ⇔ μ A C ( x ) = 1 − μ A ( x ) ( 5 ) 内积 : ⟨ A , B ⟩ = ∨ x ∈ U ( A ( x ) ∧ B ( x ) ) ( 6 ) 外积: A ⨂ B = ∧ x ∈ U ( A ( x ) ∨ B ( x ) ) 其中 ∨ , ∧ 分别表示取大,小运算。 设模糊集A,B的隶属函数为μ_A(x),μ_B(x),则A与B的常用运算有\\ (1)包含:A\subset B\Leftrightarrowμ_A(x)≤μ_B(x) \\ (2)相等:A=B\Leftrightarrowμ_A(x)=μ_B(x) \\ (3)并:C=A∪B\Leftrightarrowμ_C(x)=μ_A(x)\veeμ_B(x) \\ (4)补:A^C\Leftrightarrowμ_{A^C}(x)=1-μ_A(x) \\ (5)内积:\langle A , B \rangle=\vee_{x∈U}(A(x)\wedge B(x)) \\ (6)外积:A\bigotimes B=\wedge_{x∈U}(A(x)\vee B(x)) \\ 其中\vee,\wedge分别表示取大,小运算。 设模糊集A,B的隶属函数为μA(x),μB(x),则A与B的常用运算有(1)包含:A⊂B⇔μA(x)≤μB(x)(2)相等:A=B⇔μA(x)=μB(x)(3)并:C=A∪B⇔μC(x)=μA(x)∨μB(x)(4)补:AC⇔μAC(x)=1−μA(x)(5)内积:⟨A,B⟩=∨x∈U(A(x)∧B(x))(6)外积:A⨂B=∧x∈U(A(x)∨B(x))其中∨,∧分别表示取大,小运算。 -
隶属度函数的确定
由模糊集的概念可知,模糊数学的基本思想是隶属度,所以应用模糊数学方法建立数学模型的关键是建立符合实际的隶属函数。然而,如何确定一个模糊集的隶属函数至今还是尚未完全解决的问题。
确定隶属度的常用方法是模糊分布法。
模糊分布法将隶属函数看成一种模糊分布,首先根据问题性质选取适当的模糊分布,然后再依据相关数据确定分布中的参数。
模糊分布中常用的梯形分布:
-
偏小型
A ( x ) = { 1 , x < a b − x b − a , a ≤ x ≤ b 0 , x &
-