模糊数学笔记:七、模糊综合评判决策

模糊决策通常有意见集中决策、二元排序决策和综合评判决策(又称模糊综合决策)等方法。其中意见集中决策较为简单,即是得票最多的方案作为决策结果,二元排序决策则是将评价对象的得分进行两两对比,最终得到最优的决策结果。相对而言,模糊综合决策在生活和工作中使用最多,在相关文献中也最常见到。

1、基本思想

模糊综合决策的基本思路非常简单,即根据评判对象列出评价项目,对每个项目定出评价的等级,并用分数表示。将所得分数累加,然后按总分的大小排列次序,以决定方案的优劣。比如高考、考研、公务员考试基本都是这种思路。

关于模糊综合决策的几个名字的解释:

  • 综合评判:考虑多个因素对事物作出综合评价。
  • 评判:按照给定的条件对事物的优劣、好坏进行评比、判别。
  • 综合:评判条件包含多个因素或多个指标。

这里最常用的评分方法就是加权平均:
E = ∑ i = 1 n a i S i , i = 1 , 2 , … , n E=\sum_{i=1}^{n} a_{i} S_{i}, i=1,2, \ldots, n E=i=1naiSi,i=1,2,,n
这里 E E E表示加权评价分数, a i a_i ai 是第 i i i 个元素所占的权重, 且要求
∑ i = 1 n a i = 1 \sum_{i=1}^{n} a_{i}=1 i=1nai=1

2、模糊综合决策 的主要步骤
  • 第一步:建立因素集 U = { u 1 , u 2 , … , u n } U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} U={u1,u2,,un} 与决断集 V = { v 1 , v 2 , … , v m } V=\left\{v_{1},v_{2}, \ldots, v_{m}\right\} V={v1,v2,,vm}

  • 第二步:建立模糊综合评判矩阵,即对于每一个因素 u i u_i ui, 先建立单因素评判:
    ( r i 1 , r i 2 , … , r i m ) \left(r_{i 1}, r_{i 2}, \ldots, r_{i m}\right) (ri1,ri2,,rim)
    r i j ( 0 ⩽ r i j ⩽ 1 ) r_{i j}\left(0 \leqslant r_{i j} \leqslant 1\right) rij(0rij1) 表示 v j v_{j} vj 对因素 u i u_{i} ui 所作的评判, 这样就 得到单因素评判矩阵 R = ( r i j ) n × m \boldsymbol{R}=\left(r_{i j}\right)_{n \times m} R=(rij)n×m

  • 第三步:综合评判. 根据各因素权重 A = ( a 1 , a 2 , … , a n ) A=\left(a_{1}, a_{2}, \ldots, a_{n}\right) A=(a1,a2,,an) 综合评判 : B = A ⊕ R = ( b 1 , b 2 , … , b m ) : B=A \oplus R=\left(b_{1}, b_{2}, \ldots, b_{m}\right) :B=AR=(b1,b2,,bm) V V V 上的一个模糊子集, 根据运算 ⊕ \oplus 的不同定义, 可得到不同的模型.

3、常用评判模型
  • M ( ∧ , ∨ ) M(\wedge, \vee) M(,)主因素决定型
    b j = ∨ { ( a i ∧ r i j ) , 1 ≤ i ≤ n } ( j = 1 , 2 , … , m ) b_{j}=\vee\left\{\left(a_{i} \wedge r_{i j}\right), 1 \leq i \leq n\right\}(j=1,2, \ldots, m) bj={(airij),1in}(j=1,2,,m)
    由于综合评判的结果 b j b_j bj 的值仅由 a i a_{i} ai r i j ( i = 1 , 2 , … , n ) r_{i j}(i=1,2, \ldots, n) rij(i=1,2,,n) 中的某一个确定(先取小, 后取大运算), 着眼点是考虑主要因素, 其他因素对结果影响不大, 这种运算有时出现决策结果不易分辨的情况.

  • M ( ⋅ , ∨ ) M(\cdot, \vee) M(,)主因素突出型
    b j = ∨ { ( a i ⋅ r i j ) , 1 ≤ i ≤ n } ( j = 1 , 2 , … , m ) b_{j}=\vee\left\{\left(a_{i} \cdot r_{i j}\right), 1 \leq i \leq n\right\} \quad(j=1,2, \ldots, m) bj={(airij),1in}(j=1,2,,m)
    M ( ⋅ , ∨ ) M(\cdot, \vee) M(,) 与模型 M ( ∧ , ∨ ) M(\wedge, \vee) M(,) 较接近, 区别在于用 a i r i j a_{i} r_{i j} airij 代替了 M {M} M ( ∧ , ∨ ) (\wedge, \vee) (,) 中的 a i ∧ r i j a_{i} \wedge r_{i j} airij 在模型 M {M} M ( ⋅ , ∨ ) (\cdot, \vee) (,)中,对 r i j r_{ij} rij 乘以小于1的权重 a i a_i ai表明 a i a_{i} ai 是在考虑多因素时 r i j r_{ij} rij 的修正值,与主要因素有关,忽略了次要因素.

  • M ( ∧ , + ) M(\wedge,+) M(,+) 主因素突出型
    b j = ∑ ( a i ∧ r i j ) ( j = 1 , 2 , … , m ) b_{j}=\sum\left(a_{i} \wedge r_{i j}\right)(j=1,2, \ldots, m) bj=(airij)(j=1,2,,m)

  • M ( ・ , 十 ) M(・, 十) M(,) 加权平均模型
    b j = ∑ ( a i ⋅ r i j ) ( j = 1 , 2 , … , m ) b_{j}=\sum\left(a_{i} \cdot r_{i j}\right)(j=1,2, \ldots, m) bj=(airij)(j=1,2,,m)
    模型 M ( ・ , 十 ) M(・, 十) M(,)对所有因素依权重大小均衡兼顾, 适用于考虑各因素起作用的情况.

4、模糊评价应用实例

考虑对某厂生产的服装进行评价,其中

因素集 U = { u 1  (花色),  u 2  (式样),  u 3  (耐穿程度),  u 4 ( 价 格 ) } \boldsymbol{U}=\left\{{u}_{1} \text { (花色), } u_{2} \text { (式样), } u_{3} \text { (耐穿程度), } {u}_{4} (价格)\right\} U={u1 (花色) u2 (式样) u3 (耐穿程度) u4()} ,

评判集 V = { v 1  (很欢迎)  , v 2  (较欢迎),  v 3 ( 不 太 欢 迎 ) , v 4  (不欢迎)  } V=\left\{v_{1} \text { (很欢迎) }, \quad v_{2} \text { (较欢迎), } v_{3} (不太欢迎) ,\quad{v}_{4} \text { (不欢迎) }\right\} V={v1 (很欢迎,v2 (较欢迎) v3(),v4 (不欢迎}

对各因素所作的评判如下:
u 1 : ( 0.2 , 0.5 , 0.2 , 0.1 ) u 2 : ( 0.7 , 0.2 , 0.1 , 0 ) u 3 : ( 0 , 0.4 , 0.5 , 0.1 ) u 4 : ( 0.2 , 0.3 , 0.5 , 0 ) \begin{matrix} u_{1}: & (0.2, & 0.5, & 0.2, & 0.1) \\ u_{2}: & (0.7, & 0.2, & 0.1, & 0) \\ u_{3}: & (0, & 0.4, & 0.5, & 0.1) \\ u_{4}: & (0.2,& 0.3,& 0.5, & 0) \end{matrix} u1:u2:u3:u4:(0.2,(0.7,(0,(0.2,0.5,0.2,0.4,0.3,0.2,0.1,0.5,0.5,0.1)0)0.1)0)
注意,该评判直接决定了关系矩阵:
R = ( 0.2 0.5 0.2 0.1 0.7 0.2 0.1 0 0 0.4 0.5 0.1 0.2 0.3 0.5 0 ) R=\left(\begin{matrix} 0.2 & 0.5 & 0.2 & 0.1 \\ 0.7 & 0.2 & 0.1 & 0 \\ 0 & 0.4 & 0.5 & 0.1 \\ 0.2 & 0.3 & 0.5 & 0 \end{matrix}\right) R=0.20.700.20.50.20.40.30.20.10.50.50.100.10
对于给定各因素权重 A = ( 0.1 , 0.2 , 0.3 , 0.4 ) , A=(0.1,0.2,0.3,0.4), A=(0.1,0.2,0.3,0.4), 分别用各种模型所作的评判如下:

M ( ∧ , ∨ ) : B = ( 0.2 , 0.3 , 0.4 , 0.1 ) M ( ⋅ , ∨ ) : B = ( 0.14 , 0.12 , 0.2 , 0.03 ) M ( ∧ , + ) : B = ( 0.5 , 0.9 , 0.9 , 0.2 ) M ( ⋅ , + ) : B = ( 0.24 , 0.33 , 0.39 , 0.04 ) \begin{aligned} M(\wedge, \vee): &B=(0.2,0.3,0.4,0.1) \\ M(\cdot, \vee): &B=(0.14,0.12,0.2,0.03) \\ M(\wedge,+): &B=(0.5,0.9,0.9,0.2) \\ M(\cdot,+): &B=(0.24,0.33,0.39,0.04) \end{aligned} M(,):M(,):M(,+):M(,+):B=(0.2,0.3,0.4,0.1)B=(0.14,0.12,0.2,0.03)B=(0.5,0.9,0.9,0.2)B=(0.24,0.33,0.39,0.04)

对另一组权重 A = ( 0.4 , 0.35 , 0.15 , 0.1 ) A = (0.4, 0.35, 0.15, 0.1) A=(0.4,0.35,0.15,0.1), 可得到另一组评判:

M ( ∧ , ∨ ) : B = ( 0.35 , 0.4 , 0.2 , 0.1 ) M ( ⋅ , ∨ ) : B = ( 0.245 , 0.2 , 0.08 , 0.04 ) M ( ∧ , + ) : B = ( 0.65 , 0.85 , 0.55 , 0.2 ) M ( ⋅ , + ) : B = ( 0.345 , 0.36 , 0.24 , 0.055 ) \begin{aligned} M(\wedge, \vee): & B=(0.35,0.4,0.2,0.1) \\ M(\cdot, \vee): & B=(0.245,0.2,0.08,0.04) \\ M(\wedge,+): & B=(0.65,0.85,0.55,0.2) \\ M(\cdot,+): & B=(0.345,0.36,0.24,0.055) \end{aligned} M(,):M(,):M(,+):M(,+):B=(0.35,0.4,0.2,0.1)B=(0.245,0.2,0.08,0.04)B=(0.65,0.85,0.55,0.2)B=(0.345,0.36,0.24,0.055)
上述结果可以看到,对第一组权重该批产品得到的评价基本上都是“不太受欢迎”;而对第二组权重该批次产品得到的评价主要是“较欢迎”(第二个模型的结果为受欢迎)。而不同模型之间的结果相关不太大。由此可见,权重的选取往往是决定性的。

5、其它问题
  • 多层次评价:通常对于因素较多的情况下,可先对因素进行分级,再针对每一级单独进行评价,最终得到多层次综合评价模型。
  • 权重确定方法:上文已提到,权重往往是决定评价结果的关键因素。关于权重确定的方法也是学界一直以来重点研究的问题。现行主要方法包括统计法、模糊协调决策和模糊关系方程等方法。
  • 0
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

半个冯博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值