阵列信号处理——最小方差无失真响应(MVDR)波束形成算法及MATLAB深入仿真分析
目录
前言
在信号处理模块中,通过抗干扰算法计算对应的权值进行加权求和输出,最终达到消除干扰,保留期望信号,提高输出信干噪比的目的。表现在阵列方向图上就是主瓣指向期望信号方向,零陷对准干扰方向。
提示:以下是本篇文章正文内容,欢迎各位阅读,转载请附上链接。
一、MVDR算法
最小方差无失真响应(MVDR):对有用信号来向已知,在某种约束条下使阵列输出的方差最小。
MVDR准则表达式如下:
其中,最小化的是空域滤波器的输出功率,限制条件是期望信号方向处的功率为1,其中R是阵列接收数据协方差矩阵。
对上式使用拉格朗日乘子法,其目标函数表达式为
对上式求导,令导数为零再代入准则表达式解得最优权矢量为
输出平均功率为:
上式称为伪谱,不是信号的功率谱,对θ积分并不是信号功率。
二、仿真参数设置
仿真采用8阵元均匀线阵, 载波频率为10GHz, 阵元间距为半波长, 采样率为450MHz, 采样快拍数为1024, 通信信号为线性调频信号, 带宽为200MHz, 干扰信号形式为线性调频信号, 带宽为100MHz, 干扰信号范围为-90°到90°。通信信号和干扰信号示例如下图所示。
三、抗干扰权值计算仿真
设置干扰方向为-40°,信噪比为-30dB,干噪比为30dB,期望波束指向分别为0°、30°和60°,仿真验证抗干扰权值计算的正确性。下面分别为期望波束指向为0°、30°和60°时计算的抗干扰权值对应的方向图。
从以上图片可以看到,方向图在干扰方向和非期望波束指向处形成了较深的零陷,在期望波束指向处增益最大,表明权值计算正确。
四、不同干扰方位下抗干扰性能仿真
设置信噪比为-30dB,干噪比为30dB,期望波束指向分别为0°、30°和60°,以1°为步进遍历不同干扰方位下的抗干扰性能以及波束合成后信噪比。
下图分别为期望波束指向为0°、30°和60°时不同干扰方位下的抗干扰性能图,横轴为干扰信号角度,纵轴为阵列输出信号干噪比。可以看到,当干扰方位远离期望波束指向时,抗干扰性能较好,而当干扰方位接近期望波束指向时,抗干扰性能较差,甚至失效。
下图分别为期望波束指向为0°、30°和60°时不同干扰方位下的波束合成信噪比增益。可以看到,当干扰方位远离期望波束指向时,阵列输出信号信噪比约为-20dB,相对于-30dB,增益为10dB,波束合成效果良好;而当干扰方位接近期望波束指向时,信噪比增益减小,甚至出现与接收信噪比相比反而更加恶化的情况。
五、不同信噪比和干噪比下抗干扰性能仿真
设置干扰方向为-40°,期望波束指向为0°,分别设置干噪比为0dB、20dB和40dB,信噪比以1dB为步进,遍历-10dB到20dB下的抗干扰性能以及波束合成后信噪比增益。
下图为3种干噪比条件下不同信噪比时的抗干扰性能图,可以看到,3种干噪比条件下,在-40°干扰方向上的抗干扰性能总体呈现随着信噪比增大逐渐变差的趋势;并且,干噪比越大,抗干扰效果越好。
下图为3种干噪比条件下不同信噪比时的波束合成信噪比增益图,可以看到,3种干噪比条件下,阵列输出信号信噪比增益随着信噪比的增大而逐渐减小;并且,不同干噪比条件下的阵列输出信号信噪比增益差别不大。
六、MATLAB仿真代码
总结
本文深入仿真分析了一个干扰时MVDR算法的性能。学者可参考本文,在此基础上进一步分析多个干扰时算法的性能。