阵列信号处理——线性约束最小方差准则(LCMV)波束形成算法及MATLAB深入仿真分析
目录
前言
在信号处理模块中,通过抗干扰算法计算对应的权值进行加权求和输出,最终达到消除干扰,保留期望信号,提高输出信干噪比的目的。表现在阵列方向图上就是主瓣指向期望信号方向,零陷对准干扰方向。
提示:以下是本篇文章正文内容,欢迎各位阅读,转载请附上链接。
一、LCMV算法
线性约束最小方差准则(LCMV):对有用信号形式和来向完全已知,在某种约束条下使阵列输出的方差最小。
LCMV准则表达式如下:
其中,C为添加的特定约束矩阵,不同的约束矩阵C对应不同的应用需求。g为与约束矩阵对应的约束响应向量。然而约束的增多会限制最小总功率目标下最优权值的求解,增加一个约束会多消耗一个抗干扰自由度。因而LCMV抗干扰算法以消耗抗干扰自由度为代价满足开发者的特殊需求。
对上式使用拉格朗日乘子法,其目标函数表达式为
对上式求导,令导数为零再代入准则表达式解得最优权矢量为
若将式(2.7)中C替换为期望信号的空时方向矢量,并设置约束响应g=1,即有
此时该算法也称最小方差无失真响应(MVDR)算法,再根据上式解得最终权矢量为
二、仿真参数设置
仿真采用8阵元均匀线阵, 载波频率为10GHz, 阵元间距为半波长, 采样率为450MHz, 采样快拍数为1024, 通信信号为线性调频信号, 带宽为200MHz, 干扰信号形式为线性调频信号, 带宽为100MHz, 干扰信号范围为-90°到90°。通信信号和干扰信号示例如下图所示。
三、抗干扰权值计算仿真
设置干扰方向为-40°,信噪比为-30dB,干噪声比为30dB,期望波束指向分别为0°、30°和60°,仿真验证抗干扰权值计算的正确性。下面分别为期望波束指向为0°、30°和60°时计算的抗干扰权值对应的方向图。
从以上图片可以看到,方向图在干扰方向和非期望波束指向处形成了较深的零陷,在期望波束指向处增益最大,表明权值计算正确。
四、不同干扰方位下抗干扰性能仿真
设置信噪比为-30dB,干噪比为30dB,期望波束指向分别为0°、30°和60°,以1°为步进遍历不同干扰方位下的抗干扰性能以及波束合成后信噪比。
下图分别为期望波束指向为0°、30°和60°时不同干扰方位下的抗干扰性能图,横轴为干扰信号角度,纵轴为阵列输出信号干噪比。可以看到,当干扰方位远离期望波束指向时,抗干扰性能较好,而当干扰方位接近期望波束指向时,抗干扰性能较差,甚至失效。
下图分别为期望波束指向为0°、30°和60°时不同干扰方位下的波束合成信噪比增益。可以看到,当干扰方位远离期望波束指向时,阵列输出信号信噪比约为-20dB,相对于-30dB,增益为10dB,波束合成效果良好;而当干扰方位接近期望波束指向时,信噪比增益减小,甚至出现与接收信噪比相比反而更加恶化的情况。
五、不同信噪比和干噪比下抗干扰性能仿真
设置干扰方向为-40°,期望波束指向为0°,分别设置干噪比为0dB、20dB和40dB,信噪比以1dB为步进,遍历-10dB到20dB下的抗干扰性能以及波束合成后信噪比增益。
下图为3种干噪比条件下不同信噪比时的抗干扰性能图,可以看到,3种干噪比条件下,在-40°干扰方向上的抗干扰性能总体呈现随着信噪比增大逐渐变差的趋势;并且,干噪比越大,抗干扰效果越好。
下图为3种干噪比条件下不同信噪比时的波束合成信噪比增益图,可以看到,3种干噪比条件下,阵列输出信号信噪比增益随着信噪比的增大而逐渐减小;并且,不同干噪比条件下的阵列输出信号信噪比增益差别不大。
总结
本文深入仿真分析了一个干扰时LCMV算法的性能。