机器翻译:编码器—解码器和注意力机制的应用

目录

What

机器翻译 

编码器-解码器 

编码器 

解码器 

注意力机制 

How

前期准备

本次模型训练使用google colab平台

加载d2lzh_pytorch模块

导入包

读取和预处理数据 

预处理函数 

读取并预处理数据 

数据检查 

含注意力机制的编码器—解码器 

编码器 

注意力机制 

含注意力机制的解码器 

训练模型 

预测不定长的序列 

评价翻译结果 

简单介绍一下BLEU 


 

What

机器翻译 

机器翻译是指将一段文本从一种语言自动翻译到另一种语言。 

编码器-解码器 

 类比于“莫尔斯电码”,把文本编码成“莫尔斯电码”通过电信号发送,然后解码;机器翻译中的编码器-解码器是把文本编码成“向量”,然后对这个“向量”进行解码。

编码器 

编码器(Encoder)负责将输入序列(即源语言的文本)转换为固定大小的向量表示。编码器通常采用RNN、LSTM或者GRU等模型。编码器会逐个处理输入序列中的元素,在每个时间步更新其隐藏状态。最后,编码器会生成一个上下文向量,它包含了整个输入序列的信息。

解码器 

解码器(Decoder) 负责将编码器生成的上下文向量转换为输出序列(即目标语言的文本)。解码器通常也采用RNN、LSTM或GRU等模型。解码器使用来自编码器的上下文向量作为其初始隐藏状态,并逐个生成输出序列中的元素。在每个时间步,解码器根据当前隐藏状态、生成的上一个输出元素 和 其他可能的信息(如注意力机制),来生成下一个输出元素。

注意力机制 

如解码器介绍所示,注意力机制作用在解码器中,让解码器在生成输出时关注输入序列的不同部分,用于增强模型性能。 

How

前期准备

本次模型训练使用google colab平台

首先,确保自己有一个谷歌账号 

其次,登录Google Drive(https://drive.google.com),传实验数据,分享一下我云端硬盘里的

           法语—英语数据集

https://drive.google.com/file/d/1YAdTfd_sBmXI-5nU5ezJTPt_BGxM2awQ/view?usp=sharing

           d2lzh_pytorch模块

https://drive.google.com/drive/folders/1_ziFASM3dPwSwSdkLXM3VtJ-9Ml1GsKH?usp=sharing

再者,登录Google colab(https://colab.research.google.com),创建一个New Notebook

最后,将Google Drive挂载到Colab的文件系统中,以便于数据集的使用以及代码的保存(Colab的文件系统在每次新的会话开始时都会重新初始化,不会保留之前会话中 /content 目录下的文件)。

from google.colab import drive
 
drive.mount('/content/drive')

加载d2lzh_pytorch模块

将/content/drive/MyDrive/NLPlab13路径添加到Python的搜索路径中,使得Python能够找到并导入d2lzh_pytorch模块。 

import sys
sys.path.append('/content/drive/MyDrive/NLPlab13')

导入包

确定torchtext的版本是0.6.0 

!pip install torchtext==0.6.0
import collections
import os
import io
import math
import torch
from torch import nn
import torch.nn.functional as F
import torchtext.vocab as Vocab
import torch.utils.data as Data

import sys
# sys.path.append("..")
import d2lzh_pytorch as d2l

# 定义了三个字符串常量,分别表示填充标记(PAD)、句子开始标记(BOS)和句子结束标记(EOS)
PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'
# os.environ["CUDA_VISIBLE_DEVICES"] = "0": 设置环境变量
# CUDA_VISIBLE_DEVICES,将其值设为 "0"。这表示将使用第一个 GPU 进行计算。
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

# 检查当前系统是否有可用的 GPU。如果有,则将 device 设置为 'cuda',否则设置为 'cpu'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 打印当前 PyTorch 的版本号和计算设备(CPU 或 GPU)
print(torch.__version__, device)

查看GPU情况 

import torch

# 检查是否有可用的GPU
print("CUDA Available: ", torch.cuda.is_available())

# 如果有可用的GPU,获取GPU的数量
if torch.cuda.is_available():
    print("Number of GPUs: ", torch.cuda.device_count())

    # 获取当前GPU的索引号
    print("Current GPU index: ", torch.cuda.current_device())

    # 获取GPU的名称
    print("GPU Name: ", torch.cuda.get_device_name(torch.cuda.current_device()))
else:
    print("No GPU found.")

本人的输出:

读取和预处理数据 

预处理函数 

定义两个辅助函数对后面读取的数据进行预处理。 

# 将一个序列中所有的词记录在all_tokens中以便之后构造词典,然后在该序列后面添加PAD直到序列
# 长度变为max_seq_len,然后将序列保存在all_seqs中
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
    all_tokens.extend(seq_tokens)
    seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
    all_seqs.append(seq_tokens)

# 使用所有的词来构造词典。并将所有序列中的词变换为词索引后构造Tensor
def build_data(all_tokens, all_seqs):
    vocab = Vocab.Vocab(collections.Counter(all_tokens),
                        specials=[PAD, BOS, EOS])
    indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
    return vocab, torch.tensor(indices)

读取并预处理数据 

为了演示方便,使用的是一个很小的法语—英语数据集。在这个数据集里,每一行是一对法语句子和它对应的英语句子,中间使用'\t'隔开。在读取数据时,我们在句末附上“<eos>”符号,并可能通过添加“<pad>”符号使每个序列的长度均为max_seq_len

我们为法语词和英语词分别创建词典。法语词的索引和英语词的索引相互独立。 

def read_data(max_seq_len):
    # in和out分别是input和output的缩写
    in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []
    with io.open('/content/drive/MyDrive/NLPlab13/fr-en-small.txt') as f:
        lines = f.readlines()
    for line in lines:
        in_seq, out_seq = line.rstrip().split('\t')
        in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')
        if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
            continue  # 如果加上EOS后长于max_seq_len,则忽略掉此样本
        process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)
        process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)
    in_vocab, in_data = build_data(in_tokens, in_seqs)
    out_vocab, out_data = build_data(out_tokens, out_seqs)
    return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data)

数据检查 

将序列的最大长度设成7,然后查看读取到的第一个样本。该样本分别包含法语词索引序列和英语词索引序列。 

max_seq_len = 7
in_vocab, out_vocab, dataset = read_data(max_seq_len)
dataset[0]

输出:

含注意力机制的编码器—解码器 

将使用含注意力机制的编码器—解码器来将一段简短的法语翻译成英语。 

编码器 

在编码器中,将输入语言的词索引通过词嵌入层得到词的表征,然后输入到一个多层门控循环单元中,PyTorch的nn.GRU实例在前向计算后也会分别返回输出和最终时间步的多层隐藏状态。其中的输出指的是最后一层的隐藏层在各个时间步的隐藏状态,并不涉及输出层计算。注意力机制将这些输出作为键项和值项。 

class Encoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 drop_prob=0, **kwargs):
        super(Encoder, self).__init__(**kwargs)
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)

    def forward(self, inputs, state):
        # 输入形状是(批量大小, 时间步数)。将输出互换样本维和时间步维
        embedding = self.embedding(inputs.long()).permute(1, 0, 2) # (seq_len, batch, input_size)
        return self.rnn(embedding, state)

    def begin_state(self):
        return None

接下来创建一个批量大小为4、时间步数为7的小批量序列输入。设门控循环单元的隐藏层个数为2,隐藏单元个数为16。编码器对该输入执行前向计算后返回的输出形状为(时间步数, 批量大小, 隐藏单元个数)。门控循环单元在最终时间步的多层隐藏状态的形状为(隐藏层个数, 批量大小, 隐藏单元个数)。对于门控循环单元来说,state就是一个元素,即隐藏状态;如果使用长短期记忆,state是一个元组,包含两个元素即隐藏状态和记忆细胞。

encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
output, state = encoder(torch.zeros((4, 7)), encoder.begin_state())
output.shape, state.shape # GRU的state是h, 而LSTM的是一个元组(h, c)

输出:

 

注意力机制 

注意力机制中隐藏层的输入是解码器的隐藏状态与编码器在所有时间步上隐藏状态的一一连结,且使用tanh函数作为激活函数。输出层的输出个数为1。两个Linear实例均不使用偏差。其中函数a定义里向量v的长度是一个超参数,即attention_size。 

def attention_model(input_size, attention_size):
    model = nn.Sequential(nn.Linear(input_size, attention_size, bias=False),
                          nn.Tanh(),
                          nn.Linear(attention_size, 1, bias=False))
    return model

注意力机制的输入包括查询项、键项和值项。设编码器和解码器的隐藏单元个数相同。这里的查询项为解码器在上一时间步的隐藏状态,形状为(批量大小, 隐藏单元个数);键项和值项均为编码器在所有时间步的隐藏状态,形状为(时间步数, 批量大小, 隐藏单元个数)。注意力机制返回当前时间步的背景变量,形状为(批量大小, 隐藏单元个数)。 

def attention_forward(model, enc_states, dec_state):
    """
    enc_states: (时间步数, 批量大小, 隐藏单元个数)
    dec_state: (批量大小, 隐藏单元个数)
    """
    # 将解码器隐藏状态广播到和编码器隐藏状态形状相同后进行连结
    dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
    enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
    e = model(enc_and_dec_states)  # 形状为(时间步数, 批量大小, 1)
    alpha = F.softmax(e, dim=0)  # 在时间步维度做softmax运算
    return (alpha * enc_states).sum(dim=0)  # 返回背景变量

在下面的例子中,编码器的时间步数为10,批量大小为4,编码器和解码器的隐藏单元个数均为8。注意力机制返回一个小批量的背景向量,每个背景向量的长度等于编码器的隐藏单元个数。因此输出的形状为(4, 8)。 

seq_len, batch_size, num_hiddens = 10, 4, 8
model = attention_model(2*num_hiddens, 10)
enc_states = torch.zeros((seq_len, batch_size, num_hiddens))
dec_state = torch.zeros((batch_size, num_hiddens))
attention_forward(model, enc_states, dec_state).shape

含注意力机制的解码器 

        直接将编码器在最终时间步的隐藏状态作为解码器的初始隐藏状态。这要求编码器和解码器的循环神经网络使用相同的隐藏层个数和隐藏单元个数。

        在解码器的前向计算中,我们先通过刚刚介绍的注意力机制计算得到当前时间步的背景向量。由于解码器的输入来自输出语言的词索引,我们将输入通过词嵌入层得到表征,然后和背景向量在特征维连结。我们将连结后的结果与上一时间步的隐藏状态通过门控循环单元计算出当前时间步的输出与隐藏状态。最后,我们将输出通过全连接层变换为有关各个输出词的预测,形状为(批量大小, 输出词典大小)。

class Decoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 attention_size, drop_prob=0):
        super(Decoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.attention = attention_model(2*num_hiddens, attention_size)
        # GRU的输入包含attention输出的c和实际输入, 所以尺寸是 num_hiddens+embed_size
        self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens,
                          num_layers, dropout=drop_prob)
        self.out = nn.Linear(num_hiddens, vocab_size)

    def forward(self, cur_input, state, enc_states):
        """
        cur_input shape: (batch, )
        state shape: (num_layers, batch, num_hiddens)
        """
        # 使用注意力机制计算背景向量
        c = attention_forward(self.attention, enc_states, state[-1])
        # 将嵌入后的输入和背景向量在特征维连结, (批量大小, num_hiddens+embed_size)
        input_and_c = torch.cat((self.embedding(cur_input), c), dim=1)
        # 为输入和背景向量的连结增加时间步维,时间步个数为1
        output, state = self.rnn(input_and_c.unsqueeze(0), state)
        # 移除时间步维,输出形状为(批量大小, 输出词典大小)
        output = self.out(output).squeeze(dim=0)
        return output, state

    def begin_state(self, enc_state):
        # 直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态
        return enc_state

训练模型 

先实现batch_loss函数计算一个小批量的损失。解码器在最初时间步的输入是特殊字符BOS。之后,解码器在某时间步的输入为样本输出序列在上一时间步的词,即强制教学。此外,同10.3节(word2vec的实现)中的实现一样,我们在这里也使用掩码变量避免填充项对损失函数计算的影响。 

def batch_loss(encoder, decoder, X, Y, loss):
    batch_size = X.shape[0]
    enc_state = encoder.begin_state()
    enc_outputs, enc_state = encoder(X, enc_state)
    # 初始化解码器的隐藏状态
    dec_state = decoder.begin_state(enc_state)
    # 解码器在最初时间步的输入是BOS
    dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
    # 我们将使用掩码变量mask来忽略掉标签为填充项PAD的损失, 初始全1
    mask, num_not_pad_tokens = torch.ones(batch_size,), 0
    l = torch.tensor([0.0])
    for y in Y.permute(1,0): # Y shape: (batch, seq_len)
        dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
        l = l + (mask * loss(dec_output, y)).sum()
        dec_input = y  # 使用强制教学
        num_not_pad_tokens += mask.sum().item()
        # EOS后面全是PAD. 下面一行保证一旦遇到EOS接下来的循环中mask就一直是0
        mask = mask * (y != out_vocab.stoi[EOS]).float()
    return l / num_not_pad_tokens

在训练函数中,我们需要同时迭代编码器和解码器的模型参数 

def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
    # 使用Adam优化器分别为编码器和解码器的参数设置优化器
    enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
    dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)

    # 使用交叉熵损失函数,并设置不进行损失归约
    loss = nn.CrossEntropyLoss(reduction='none')
    
    # 使用DataLoader将数据集进行批处理,每个批次包含batch_size个样本,数据随机打乱
    data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
    
    # 训练循环,遍历每个epoch
    for epoch in range(num_epochs):
        l_sum = 0.0  # 初始化损失和
        
        # 遍历每个批次的数据
        for X, Y in data_iter:
            enc_optimizer.zero_grad()  # 清零编码器的梯度
            dec_optimizer.zero_grad()  # 清零解码器的梯度
            
            # 计算当前批次的损失
            l = batch_loss(encoder, decoder, X, Y, loss)
            
            l.backward()  # 反向传播计算梯度
            
            enc_optimizer.step()  # 更新编码器的参数
            dec_optimizer.step()  # 更新解码器的参数
            
            l_sum += l.item()  # 累加当前批次的损失
        
        # 每经过10个epoch,输出当前的平均损失
        if (epoch + 1) % 10 == 0:
            print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))

接下来,创建模型实例并设置超参数。然后,我们就可以训练模型了。 

# 嵌入层的维度大小。表示每个词在嵌入空间中的向量表示的维度。
embed_size = 64

# 隐藏层的维度大小。表示每个隐藏层的神经元数量。
num_hiddens = 64

# GRU等循环神经网络的层数。表示编码器和解码器中使用的堆叠层数。
num_layers = 2

# 注意力机制的大小。表示注意力层中使用的隐藏层维度大小。
attention_size = 10

# 丢弃概率。用于在训练过程中进行dropout操作的概率,防止过拟合。
drop_prob = 0.5

# 学习率。表示优化器更新模型参数时的步长大小。
lr = 0.01

# 批量大小。表示每次训练时使用的样本数量。
batch_size = 2

# 训练的轮数。表示整个训练集被遍历的次数。
num_epochs = 50

encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers, drop_prob)
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers, attention_size, drop_prob)
train(encoder, decoder, dataset, lr, batch_size, num_epochs)

输出:

 

预测不定长的序列 

使用贪婪搜索生成解码器在每个时间步的输出 

def translate(encoder, decoder, input_seq, max_seq_len):
    # 将输入序列分割成单词列表
    in_tokens = input_seq.split(' ')
    
    # 在输入序列末尾添加结束符EOS,然后填充PAD符号,确保长度为max_seq_len
    in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1)
    
    # 将单词列表转换为张量,这里使用vocabulary的stoi(string to index)将单词转换为索引
    enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]])  # batch=1
    
    # 获取编码器的初始状态
    enc_state = encoder.begin_state()
    
    # 使用编码器处理输入,得到编码器的输出和新的状态
    enc_output, enc_state = encoder(enc_input, enc_state)
    
    # 初始化解码器的输入为开始符BOS,并转换为张量索引
    dec_input = torch.tensor([out_vocab.stoi[BOS]])
    
    # 获取解码器的初始状态,这里是基于编码器的最终状态
    dec_state = decoder.begin_state(enc_state)
    
    # 用于存储输出的单词列表
    output_tokens = []
    
    # 循环直到达到最大序列长度
    for _ in range(max_seq_len):
        # 使用解码器生成输出和新的状态
        dec_output, dec_state = decoder(dec_input, dec_state, enc_output)
        
        # 选择输出中概率最大的单词索引
        pred = dec_output.argmax(dim=1)
        
        # 将索引转换回单词
        pred_token = out_vocab.itos[int(pred.item())]
        
        # 如果输出单词是结束符EOS,则停止生成
        if pred_token == EOS:
            break
        else:
            # 否则,将生成的单词添加到输出列表中,并将其作为下一个时间步的输入
            output_tokens.append(pred_token)
            dec_input = pred
    
    # 返回生成的单词列表(即翻译结果)
    return output_tokens

简单测试一下模型。输入法语句子“ils regardent.”,翻译后的英语句子应该是“they are watching.”。 

input_seq = 'ils regardent .'
translate(encoder, decoder, input_seq, max_seq_len)

评价翻译结果 

评价机器翻译结果通常使用BLEU(Bilingual Evaluation Understudy)。对于模型预测序列中任意的子序列,BLEU考察这个子序列是否出现在标签序列中

简单介绍一下BLEU 

BLEU是机器翻译领域一个常用的质量评估指标,其基本思想是通过比较机器翻译的结果和人工翻译的结果在词级别上的匹配度来评估翻译质量。BLEU主要关注的是N-Gram精度,会计算不同长度N-Gram的精度,并结合这些精度得到一个综合评估。此外,BLEU还引入一个简短惩罚因子,避免过短的翻译获得过高的评分。 

def bleu(pred_tokens, label_tokens, k):
    """
    计算BLEU分数。

    Args:
    - pred_tokens: 预测的词序列
    - label_tokens: 真实的词序列
    - k: 最大的n-gram大小

    Returns:
    - score: 计算的BLEU分数
    """

    # 预测序列的长度和真实序列的长度
    len_pred, len_label = len(pred_tokens), len(label_tokens)

    # 计算BLEU分数中的brevity penalty,防止短翻译结果得分过高
    score = math.exp(min(0, 1 - len_label / len_pred))

    # 逐个计算1到k的n-gram匹配
    for n in range(1, k + 1):
        num_matches, label_subs = 0, collections.defaultdict(int)

        # 计算真实序列中的n-gram数量
        for i in range(len_label - n + 1):
            label_subs[''.join(label_tokens[i: i + n])] += 1

        # 计算预测序列中的n-gram匹配数量
        for i in range(len_pred - n + 1):
            if label_subs[''.join(pred_tokens[i: i + n])] > 0:
                num_matches += 1
                label_subs[''.join(pred_tokens[i: i + n])] -= 1

        # 计算n-gram的精确度,并乘以分数
        score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))

    return score

接下来,定义一个辅助打印函数。 

def score(input_seq, label_seq, k):
    pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
    label_tokens = label_seq.split(' ')
    print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k),
                                      ' '.join(pred_tokens)))

预测正确则分数为1。 

score('ils regardent .', 'they are watching .', k=2)
score('ils sont canadienne .', 'they are canadian .', k=2)

输出:

 

over 

 

 

 

  • 9
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值