机器翻译:含注意力机制的编码器-解码器

一、机器翻译

        机器翻译,又称为自动翻译,简称“机翻、机译”,是利用计算机将一种自然语言转换为另一种自然语言的过程。它是计算语言学的一个分支,是人工智能的终极目标之一,具有重要的科学研究价值。

        这里我们主要使用机器翻译为例来介绍编码器—解码器和注意力机制的应用。

二、编码器-解码器、注意力机制

        编码器-解码器(encoder-decoder)架构由两部分组成,分别叫做编码器(Encoder)和解码器(Decoder),编码器用来分析输入序列,解码器用来生成输出序列。
        我们将使用含注意力机制的编码器—解码器来将一段简短的法语翻译成英语。下面我们来介绍模型的实现。

2.1 编码器

        在编码器中,我们将输入语言的词索引通过词嵌入层得到词的表征,然后输入到一个多层门控循环单元中。其中的输出指的是最后一层的隐藏层在各个时间步的隐藏状态,并不涉及输出层计算。注意力机制将这些输出作为键项和值项。

class Encoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 drop_prob=0, **kwargs):
        super(Encoder, self).__init__(**kwargs)
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)

    def forward(self, inputs, state):
        # 输入形状是(批量大小, 时间步数)。将输出互换样本维和时间步维
        embedding = self.embedding(inputs.long()).permute(1, 0, 2) # (seq_len, batch, input_size)
        return self.rnn(embedding, state)

    def begin_state(self):
        return None

        下面我们来创建一个批量大小为4、时间步数为7的小批量序列输入。设门控循环单元的隐藏层个数为2,隐藏单元个数为16。

encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
output, state = encoder(torch.zeros((4, 7)), encoder.begin_state())
output.shape, state.shape # GRU的state是h, 而LSTM的是一个元组(h, c)

2.2 注意力机制

        注意力机制是机器学习中的一种数据处理方法,广泛应用在自然语言处理、图像识别以及语音识别等各种不同类型的机器学习任务中。注意力机制对不同信息的关注程度由权值来体现,注意力机制可以视为查询矩阵以及加权平均值构成的多层感知机。

        注意力机制的输入包括查询项、键项和值项。设编码器和解码器的隐藏单元个数相同。这里的查询项为解码器在上一时间步的隐藏状态,形状为(批量大小, 隐藏单元个数);键项和值项均为编码器在所有时间步的隐藏状态,形状为(时间步数, 批量大小, 隐藏单元个数)。注意力机制返回当前时间步的背景变量,形状为(批量大小, 隐藏单元个数)。

def attention_forward(model, enc_states, dec_state):
    """
    enc_states: (时间步数, 批量大小, 隐藏单元个数)
    dec_state: (批量大小, 隐藏单元个数)
    """
    # 将解码器隐藏状态广播到和编码器隐藏状态形状相同后进行连结
    dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
    enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
    e = model(enc_and_dec_states)  # 形状为(时间步数, 批量大小, 1)
    alpha = F.softmax(e, dim=0)  # 在时间步维度做softmax运算
    return (alpha * enc_states).sum(dim=0)  # 返回背景变量

        设编码器的时间步数为10,批量大小为4,编码器和解码器的隐藏单元个数均为8。注意力机制返回一个小批量的背景向量,每个背景向量的长度等于编码器的隐藏单元个数。因此输出的形状为(4, 8)。

seq_len, batch_size, num_hiddens = 10, 4, 8
model = attention_model(2*num_hiddens, 10) 
enc_states = torch.zeros((seq_len, batch_size, num_hiddens))
dec_state = torch.zeros((batch_size, num_hiddens))
attention_forward(model, enc_states, dec_state).shape

2.3 含注意力机制的解码器

        直接将编码器在最终时间步的隐藏状态作为解码器的初始隐藏状态,这要求编码器和解码器的循环神经网络使用相同的隐藏层个数和隐藏单元个数。

class Decoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 attention_size, drop_prob=0):
        super(Decoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.attention = attention_model(2*num_hiddens, attention_size)
        # GRU的输入包含attention输出的c和实际输入, 所以尺寸是 num_hiddens+embed_size
        self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens, 
                          num_layers, dropout=drop_prob)
        self.out = nn.Linear(num_hiddens, vocab_size)

    def forward(self, cur_input, state, enc_states):
        """
        cur_input shape: (batch, )
        state shape: (num_layers, batch, num_hiddens)
        """
        # 使用注意力机制计算背景向量
        c = attention_forward(self.attention, enc_states, state[-1])
        # 将嵌入后的输入和背景向量在特征维连结, (批量大小, num_hiddens+embed_size)
        input_and_c = torch.cat((self.embedding(cur_input), c), dim=1) 
        # 为输入和背景向量的连结增加时间步维,时间步个数为1
        output, state = self.rnn(input_and_c.unsqueeze(0), state)
        # 移除时间步维,输出形状为(批量大小, 输出词典大小)
        output = self.out(output).squeeze(dim=0)
        return output, state

    def begin_state(self, enc_state):
        # 直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态
        return enc_state

三、实验内容

3.1 读取和预处理数据

        先来定义一些特殊符号,<pad>”(padding)符号用来添加在较短序列后,直到每个序列等长,而“<bos>”()和“<eos>”符号分别表示序列的开始和结束。然后定义两个辅助函数对后面读取的数据进行预处理。

import collections
import os
import io
import math
import torch
from torch import nn
import torch.nn.functional as F
import torchtext.vocab as Vocab
import torch.utils.data as Data

import sys
# sys.path.append("..") 
import d2lzh_pytorch as d2l

PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

print(torch.__version__, device)
# 将一个序列中所有的词记录在all_tokens中以便之后构造词典,然后在该序列后面添加PAD直到序列
# 长度变为max_seq_len,然后将序列保存在all_seqs中
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
    all_tokens.extend(seq_tokens)
    seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
    all_seqs.append(seq_tokens)

# 使用所有的词来构造词典。并将所有序列中的词变换为词索引后构造Tensor
def build_data(all_tokens, all_seqs):
    vocab = Vocab.Vocab(collections.Counter(all_tokens),
                        specials=[PAD, BOS, EOS])
    indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
    return vocab, torch.tensor(indices)

这里运用一个很小的法语-英语数据集举个例子:

def read_data(max_seq_len):
    # in和out分别是input和output的缩写
    in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []
    with io.open('fr-en-small.txt') as f:
        lines = f.readlines()
    for line in lines:
        in_seq, out_seq = line.rstrip().split('\t')
        in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')
        if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
            continue  # 如果加上EOS后长于max_seq_len,则忽略掉此样本
        process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)
        process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)
    in_vocab, in_data = build_data(in_tokens, in_seqs)
    out_vocab, out_data = build_data(out_tokens, out_seqs)
    return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data)

定义序列的最大长度为7并读取数据:

max_seq_len = 7
in_vocab, out_vocab, dataset = read_data(max_seq_len)
dataset[0]

3.2 构建编码器、含注意力机制的解码器

 如上所述。

3.3 训练模型

定义损失计算函数和训练函数

def batch_loss(encoder, decoder, X, Y, loss):
    batch_size = X.shape[0]
    enc_state = encoder.begin_state()
    enc_outputs, enc_state = encoder(X, enc_state)
    # 初始化解码器的隐藏状态
    dec_state = decoder.begin_state(enc_state)
    # 解码器在最初时间步的输入是BOS
    dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
    # 我们将使用掩码变量mask来忽略掉标签为填充项PAD的损失, 初始全1
    mask, num_not_pad_tokens = torch.ones(batch_size,), 0
    l = torch.tensor([0.0])
    for y in Y.permute(1,0): # Y shape: (batch, seq_len)
        dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
        l = l + (mask * loss(dec_output, y)).sum()
        dec_input = y  # 使用强制教学
        num_not_pad_tokens += mask.sum().item()
        # EOS后面全是PAD. 下面一行保证一旦遇到EOS接下来的循环中mask就一直是0
        mask = mask * (y != out_vocab.stoi[EOS]).float()
    return l / num_not_pad_tokens
def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
    enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
    dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)

    loss = nn.CrossEntropyLoss(reduction='none')
    data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
    for epoch in range(num_epochs):
        l_sum = 0.0
        for X, Y in data_iter:
            enc_optimizer.zero_grad()
            dec_optimizer.zero_grad()
            l = batch_loss(encoder, decoder, X, Y, loss)
            l.backward()
            enc_optimizer.step()
            dec_optimizer.step()
            l_sum += l.item()
        if (epoch + 1) % 10 == 0:
            print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))

创建模型实例并设置超参数,开始训练

embed_size, num_hiddens, num_layers = 64, 64, 2
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 50
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers,
                  drop_prob)
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers,
                  attention_size, drop_prob)
train(encoder, decoder, dataset, lr, batch_size, num_epochs)

3.4 预测不定长的序列

使用贪婪搜索来生成解码器在每个时间步的输出

def translate(encoder, decoder, input_seq, max_seq_len):
    in_tokens = input_seq.split(' ')
    in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1)
    enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]]) # batch=1
    enc_state = encoder.begin_state()
    enc_output, enc_state = encoder(enc_input, enc_state)
    dec_input = torch.tensor([out_vocab.stoi[BOS]])
    dec_state = decoder.begin_state(enc_state)
    output_tokens = []
    for _ in range(max_seq_len):
        dec_output, dec_state = decoder(dec_input, dec_state, enc_output)
        pred = dec_output.argmax(dim=1)
        pred_token = out_vocab.itos[int(pred.item())]
        if pred_token == EOS:  # 当任一时间步搜索出EOS时,输出序列即完成
            break
        else:
            output_tokens.append(pred_token)
            dec_input = pred
    return output_tokens

开始测试

input_seq = 'ils regardent .'
translate(encoder, decoder, input_seq, max_seq_len)

3.5 评价翻译结果

定义一个函数来实现BLEU的计算

def bleu(pred_tokens, label_tokens, k):
    # 计算预测序列和参考序列的长度
    len_pred, len_label = len(pred_tokens), len(label_tokens)
    # 计算长度惩罚因子score
    score = math.exp(min(0, 1 - len_label / len_pred))
    # 计算n-gram匹配的分数
    for n in range(1, k + 1):
        num_matches, label_subs = 0, collections.defaultdict(int)
        # 统计参考序列中所有n-gram的出现次数
        for i in range(len_label - n + 1):
            label_subs[''.join(label_tokens[i: i + n])] += 1
        # 统计预测序列中与参考序列n-gram匹配的次数
        for i in range(len_pred - n + 1):
            if label_subs[''.join(pred_tokens[i: i + n])] > 0:
                num_matches += 1
                label_subs[''.join(pred_tokens[i: i + n])] -= 1
        # 计算n-gram匹配的精确度,并乘以惩罚因子
        score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
    # 返回最终的BLEU评分
    return score

然后定义一个辅助打印函数

def score(input_seq, label_seq, k):
    pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
    # 将参考序列label_seq按空格分割成单词列表label_tokens
    label_tokens = label_seq.split(' ')
    # BLEU评分保留三位小数,预测序列也会打印出来
    print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k),
                                      ' '.join(pred_tokens)))

测试BLEU评分

score('ils regardent .', 'they are watching .', k=2)
score('ils sont canadienne .', 'they are canadian .', k=2)

四、实验总结

        在本次实验中,我们详细介绍了如何用编码器-解码器架构、注意力机制和BLEU得分来实现一个简单的机器翻译任务。要点总结如下:

        1.编码器-解码器架构:是一种深度学习模型结构,用于处理序列到序列的任务,如机器翻译和文本摘要。编码器负责将输入序列编码成上下文向量,捕捉输入序列的语义信息;解码器则利用这个向量生成目标序列。典型的应用包括使用注意力机制来加强编码器和解码器之间的信息流,以及使用位置编码来保持序列中单词的顺序信息。

        2.注意力机制:是一种用于增强深度学习模型性能的技术,特别是在处理序列和列表数据时非常有效。它允许模型动态地将注意力集中在输入的不同部分,从而更精确地对每个输出位置或步骤进行建模。通过计算注意力权重,模型能够选择性地聚焦于与当前预测相关的输入信息,提升了模型在语言翻译、文本生成等任务中的表现。

        .3.BLEU评分:是一种用于自动评估机器翻译结果质量的指标,通过比较机器生成的翻译结果与人类参考翻译之间的相似度来进行评估。它基于 n-gram 的匹配程度和短语级别的精确度,结合了精确匹配和部分匹配的权衡,以提供一个介于0到1之间的分数,越接近1表示机器翻译结果与参考翻译越接近,表明翻译质量较高。

        通过实验,我们展示并学习了深度学习模型的构建和训练,也认识到了自然语言处理的一些核心技术。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值