简介:个人学习分享,如有错误,欢迎批评指正。
一、欧拉公式的背景
欧拉公式由瑞士数学家莱昂哈德·欧拉(Leonhard Euler)于18世纪提出,是数学中一个非常简洁而又深刻的公式。它连接了五个重要的数学常数:自然对数的底数 e e e、虚数单位 i i i、圆周率 π \pi π、加法单位 1 和乘法单位 0,形成了一个完美的等式:
e i π + 1 = 0 e^{i\pi} + 1 = 0 eiπ+1=0
这被认为是数学中最美丽的公式之一。这个公式不仅展示了数学的统一性,还将不同领域的知识紧密联系在一起。
二、复数的概念
我们把形如 z = a + b i z = a + bi z=a+bi( a , b a, b a,b 均为实数)的数称为复数。其中, a a a 称为实部, b b b 称为虚部, i i i 称为虚数单位。当 z z z 的虚部 b = 0 b = 0 b=0 时,则 z z z 为实数;当 z z z 的虚部 b ≠ 0 b \neq 0 b=0 且实部 a = 0 a = 0 a=0 时,常称 z z z 为纯虚数。
如图所示:德国数学家阿甘得认为在直角坐标系中,横轴上取对应实数
a
a
a 的点 A,纵轴上取对应实数
b
b
b 的点 B,并通过这两点引平行于坐标轴的直线,它们的交点 C 就表示
复数。由各点对应复数的平面叫做“复平面”。
后来,数学家高斯不仅把复数看作是平面上的点,而且还看作是一种向量。
三、欧拉公式的含义
欧拉公式是复分析、量子物理、信号处理等多个学科中的重要工具,具有极高的数学美感和深远的影响。它将复数的指数形式与三角函数(余弦和正弦)联系在一起,其表达式为:
e i θ = cos ( θ ) + i sin ( θ ) e^{i\theta} = \cos(\theta) + i\sin(\theta) eiθ=cos(θ)+isin(θ)
其中:
-
e
e
e 是
自然对数的底数
,约为 2.71828, -
i
i
i 是
虚数单位
,满足 i 2 = − 1 i^2 = -1 i2=−1, -
θ
\theta
θ 是
实数角度
(通常以弧度为单位), -
cos
(
θ
)
\cos(\theta)
cos(θ) 和
sin
(
θ
)
\sin(\theta)
sin(θ) 分别是角度
θ
\theta
θ 的
余弦
和正弦
。
四、欧拉公式的推导
欧拉公式可以通过泰勒级数展开推导得到。首先回顾一下与欧拉公式相关的几项泰勒级数:
-
指数函数的泰勒级数展开:自然指数函数 e x e^x ex 的泰勒展开式为:
e x = 1 + x 1 ! + x 2 2 ! + x 3 3 ! + ⋯ e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots ex=1+1!x+2!x2+3!x3+⋯
-
余弦和正弦函数的泰勒级数展开:余弦函数和正弦函数的泰勒展开式分别为:
cos ( x ) = 1 − x 2 2 ! + x 4 4 ! − ⋯ \cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots cos(x)=1−2!x2+4!x4−⋯
sin ( x ) = x − x 3 3 ! + x 5 5 ! − ⋯ \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots sin(x)=x−3!x3+5!x5−⋯
现在,将 x = i θ x = i\theta x=iθ 代入 e x e^x ex 的泰勒级数展开式:
e i θ = 1 + i θ 1 ! + ( i θ ) 2 2 ! + ( i θ ) 3 3 ! + ⋯ e^{i\theta} = 1 + \frac{i\theta}{1!} + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \cdots eiθ=1+1!iθ+2!(iθ)2+3!(iθ)3+⋯
由于 i 2 = − 1 i^2 = -1 i2=−1,我们可以将 i θ i\theta iθ 的各次幂展开发现:
- ( i θ ) 2 = − θ 2 (i\theta)^2 = -\theta^2 (iθ)2=−θ2,
- ( i θ ) 3 = − i θ 3 (i\theta)^3 = -i\theta^3 (iθ)3=−iθ3,
- ( i θ ) 4 = θ 4 (i\theta)^4 = \theta^4 (iθ)4=θ4.
因此,代入后得到:
e i θ = 1 + i θ − θ 2 2 ! − i θ 3 3 ! + θ 4 4 ! + i θ 5 5 ! − ⋯ e^{i\theta} = 1 + i\theta - \frac{\theta^2}{2!} - i\frac{\theta^3}{3!} + \frac{\theta^4}{4!} + i\frac{\theta^5}{5!} - \cdots eiθ=1+iθ−2!θ2−i3!θ3+4!θ4+i5!θ5−⋯
将实部和虚部分开,得到:
e i θ = ( 1 − θ 2 2 ! + θ 4 4 ! − ⋯ ) + i ( θ − θ 3 3 ! + θ 5 5 ! − ⋯ ) e^{i\theta} = \left( 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \cdots \right) + i \left( \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots \right) eiθ=(1−2!θ2+4!θ4−⋯)+i(θ−3!θ3+5!θ5−⋯)
这恰好是余弦和正弦的泰勒级数展开式,因此可以得出:
e i θ = cos ( θ ) + i sin ( θ ) e^{i\theta} = \cos(\theta) + i\sin(\theta) eiθ=cos(θ)+isin(θ)
五、欧拉公式的几何解释
欧拉公式不仅是一个代数公式,它还具有深刻的几何意义。在复平面中,复数可以表示为 x + i y x + iy x+iy,其中 x x x 是实部, y y y 是虚部。通过欧拉公式,复数可以用极坐标的方式表示:
- 复数 e i θ e^{i\theta} eiθ 可以看作是在复平面中,单位圆上与实轴夹角为 θ \theta θ 的一个点,坐标是 ( cos ( θ ) (\cos(\theta) (cos(θ), sin ( θ ) ) \sin(\theta)) sin(θ))
- 该点的模长为 1,方向为 θ \theta θ,即复数的极坐标形式为 r e i θ re^{i\theta} reiθ,其中 r = 1 r = 1 r=1 为模长。
当r=1时:
当r=a时:
图形上,欧拉公式展示了复平面中从原点出发,转过角度 θ \theta θ 后所到达的位置。
六、欧拉公式的应用
-
傅里叶变换:欧拉公式在傅里叶分析中有重要应用。
傅里叶变换将一个函数表示为不同频率的正弦和余弦的组合,从而能够分析信号的频率特性
。使用欧拉公式,傅里叶变换可以通过复指数形式表示,从而简化了许多计算和理论推导。 -
复数乘法和除法:欧拉公式提供了复数的另一种表示方式:如果一个复数 z = x + i y z = x + iy z=x+iy,则它可以表示为
极坐标形式
:z = r e i θ z = re^{i\theta} z=reiθ
其中 r = ∣ z ∣ r = |z| r=∣z∣ 是复数的模, θ \theta θ 是复数的辐角。在复数的乘法和除法中,欧拉公式通过极坐标形式提供了简化计算的方法。具体地,
复数的乘法可以通过其模长相乘、复数的除法则是模长相除、角度相减
。如果 z 1 = r 1 e i θ 1 z_1 = r_1 e^{i\theta_1} z1=r1eiθ1 和 z 2 = r 2 e i θ 2 z_2 = r_2 e^{i\theta_2} z2=r2eiθ2,则:
- z 1 ⋅ z 2 = r 1 r 2 e i ( θ 1 + θ 2 ) z_1 \cdot z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)} z1⋅z2=r1r2ei(θ1+θ2),
- z 1 z 2 = r 1 r 2 e i ( θ 1 − θ 2 ) \frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)} z2z1=r2r1ei(θ1−θ2).
欧拉公式可以看作是一个将复数指数运算转化为三角函数表示的工具。
-
量子力学:在量子力学中,欧拉公式常用于表示波函数的相位演化。
波函数的相位因子常常通过指数形式
e i θ e^{i\theta} eiθ表示,用于描述粒子状态的相对变化
。 -
电路和信号处理:在交流电路中,欧拉公式可以用来表示电压、电流等随时间变化的正弦波,尤其是在分析阻抗、相位角等时,指数形式比三角函数形式更加方便。
七、欧拉恒等式(Euler’s identity)
欧拉公式的一个特殊情况 θ = π \theta = \pi θ=π 产生了著名的欧拉恒等式:
e i π + 1 = 0 e^{i\pi} + 1 = 0 eiπ+1=0
这个公式被称为“数学之美”的体现,因为它简洁地将五个最基本的数学常数 ( e , i , π , 1 , 0 ) (e, i, \pi, 1, 0) (e,i,π,1,0) 通过一个简单的等式联系在一起。它是数学中的一个经典公式,许多数学家和物理学家称其为最美丽的数学公式。
总结
欧拉公式揭示了复数与三角函数、指数函数之间的深刻关系,是现代数学、物理、工程等领域不可或缺的工具。它不仅在理论上具有重要意义,而且在实际应用中,特别是在信号处理、量子力学、复分析和傅里叶分析等领域中,发挥着关键作用。
参考文献:
傅立叶变换之(一)——欧拉公式
结~~~