你的AI,是不是还缺点“外挂”?
嘿,各位走在AI时代前沿的小伙伴们!咱们是不是经常感觉手里的大语言模型(LLM)虽然聪明,但总有点“书呆子”气?它们知识渊博,能写诗作画,能编码解惑,但一旦让它们去网上查个实时信息,或者帮你整理一下本地电脑上的文件,它们往往就“傻眼”了。
这就像给一个超级大脑配了一副老花镜和一双被绑住的手,空有一身本领却施展不开。我们渴望的,是一个能真正连接现实世界,能调用各种工具,能像人类一样“动手”解决问题的AI助手。
好消息是,这个愿望正在成为现实!最近,一个名为**MCP(Model Context Protocol,模型上下文协议)**的概念正在AI圈子里迅速蹿红。而今天,咱们就借着一款广受欢迎的AI桌面客户端——Cherry Studio,来一次MCP的入门实战,手把手教你如何给你的大模型插上“翅膀”,让它拥有与外部世界交互的超能力!
什么是MCP?给AI装上“万能插座”!
想象一下,如果把大模型比作一个需要“供电”才能工作的超级电器,那么MCP就像是一个万能插座协议。它定义了一套标准接口,让大模型这个“电器”可以方便地连接并使用各种各样的“外部设备”——也就是我们常说的第三方工具或API服务。
简单来说,MCP就是一座连接大模型与外部API/工具的桥梁。
通过这座桥梁:
- 大模型不再局限于它预训练时学到的那些“静态”知识。
- 它可以实时调用外部工具来获取最新信息(比如用
fetch
工具抓取网页)。 - 它可以操作你本地的资源(比如用
filesystem
工具管理你的文件)。 - 它可以控制更复杂的软件(比如未来可能控制Blender、Figma甚至Word)。
一句话总结:MCP,让大模型从一个“只说不做”的聊天机器人,进化成一个能够感知和操作现实世界的智能体(AI Agent)。这扇通往更广阔应用场景的大门,正被MCP缓缓推开。
为什么选择Cherry Studio?新手友好的MCP实践平台
市面上支持MCP的工具正在逐渐增多,我们为什么选择从Cherry Studio入手呢?
- 用户友好:Cherry Studio以其简洁直观的图形用户界面(GUI)和流畅的体验赢得了大量用户的喜爱,相比命令行工具,它对新手更加友好。
- 功能全面:它不仅仅是一个聊天界面,还集成了模型管理、Prompt管理、插件系统等多种功能。
- 率先支持MCP:作为紧跟技术前沿的客户端,Cherry Studio较早地集成了对MCP服务的支持,并且提供了相对便捷的配置方式。
本文将以Cherry Studio官方文档中推荐的fetch
工具为例,带大家走通MCP配置和使用的第一步。然后,我们会“举一反三”,演示如何添加并使用filesystem
工具来操作本地文件夹,让你直观感受MCP的强大扩展性。准备好了吗?Let’s Go!
准备工作:安装你的“螺丝刀”和“扳手”
在正式开始为大模型“改装升级”之前,我们需要准备好两样关键的“工具”——uv
和bun
。别担心,它们都是现代化的开发工具,安装起来通常很简单。
-
uv
:- 它是什么?
uv
是一个由Astral公司(Ruff的开发者)开发的超高速Python包安装器和解析器。你可以把它看作是pip
和venv
的更快、更现代的替代品。在MCP的场景下,很多基于Python的MCP服务器会推荐使用uv
来管理和运行环境,因为它快得飞起! - 如何安装? 通常,如果你有Python环境(尤其是较新版本),可以在终端(命令行或PowerShell)中运行:
你可以访问uv的GitHub或官方文档获取最准确的安装指南。pip install uv # 或者根据uv官方文档推荐的其他安装方式
- 它是什么?
-
bun
:- 它是什么?
Bun
是一个极速的JavaScript全家桶工具。它不仅仅是一个运行时(像Node.js),还是一个打包器、测试器、包管理器(兼容npm)。很多现代Web项目和一些基于JavaScript/TypeScript的MCP服务器会用到它。 - 如何安装? 访问Bun的官方网站(https://bun.sh/),通常会提供一行简单的安装命令,适用于macOS, Linux和Windows WSL。请根据官网指示操作。
- 它是什么?
安装完成后,你可以在终端里输入uv --version
和bun --version
来验证它们是否安装成功。这两件利器在手,我们就可以开始配置MCP服务器了!
实战演练一:配置fetch
服务器,让AI“上网冲浪”
咱们的第一个实战目标是配置fetch
工具。
为什么选它?
- 功能实用:它能抓取指定网页的内容,这是让AI获取实时信息的基础能力。
- 配置简单:官方提供了清晰的配置示例,非常适合新手入门,理解MCP的配置逻辑。
配置步骤详解:
- 打开Cherry Studio客户端,找到并点击左侧菜单栏的**“设置”**图标。
- 在设置界面中,向下滚动或在左侧导航栏找到**“MCP 服务器”**选项,点击进入。
- 你会看到一个列表(初始可能为空),点击右上角的**“添加服务器”**按钮。
- 现在,你需要填写这个新MCP服务器的配置信息。对于
fetch
服务器,按照以下方式填写:- 名称 (Name): 给它起个你能记住的名字,比如就叫
fetch
。 - 类型 (Type): 这里是关键。选择
STDIO
。 - 命令 (Command): 填写
uvx
。 - 参数 (Args): 填写
mcp-server-fetch
。 (注意:这里是一个单独的参数项,不是跟在uvx
后面。)
- 名称 (Name): 给它起个你能记住的名字,比如就叫
参数解读:为什么要这么填?
- 类型 (Type) -
STDIO
vsSSE
:STDIO
(Standard Input/Output): 表示这个MCP服务器将在你的本地计算机上运行。它的优点是可以访问你本机的资源(比如文件、应用程序),缺点是通常需要你在本地配置好相应的运行环境(比如Python、Node.js等,这也是我们安装uv
和bun
的原因)。fetch
和filesystem
都需要访问网络或本地文件,所以选择STDIO
。SSE
(Server-Sent Events): 表示这个MCP服务器运行在远程服务器上。它的优点是配置通常更简单(可能只需要填一个URL),缺点是它无法访问你的本地资源。
- 命令 (Command) -
uvx
:uvx
是uv
工具的一个命令,它的作用类似于npx
(Node.js的包执行器),可以在不全局安装包的情况下,下载并执行一个Python包。这里表示我们要用uvx
来运行mcp-server-fetch
这个包。 - 参数 (Args) -
mcp-server-fetch
: 这是传递给uvx
命令的具体包名。uvx
会自动处理下载、创建虚拟环境并运行这个包里的MCP服务器程序。
如何找到这些配置信息?
对于公开的MCP服务器,通常可以在它们的GitHub仓库或相关文档中找到配置指南。例如,fetch
工具的配置信息就来源于其官方GitHub仓库的示例:
// 示例配置结构 (非直接复制到Cherry Studio)
"mcpServers": {
"fetch": {
"command": "uvx",
"args": ["mcp-server-fetch"]
}
}
看到了吗?command
对应Cherry Studio里的“命令”,args
对应“参数”。掌握这个方法,你以后就可以自己去探索和配置更多公开的MCP服务器了!
保存并启用:
填写完毕后,点击“确定”或“保存”。fetch
服务器就添加到你的列表中了。
使用方法:让AI小试牛刀
- 回到Cherry Studio的主对话界面。
- 在输入框上方或模型选择区域附近,找到启用/选择MCP服务器的按钮(通常是一个类似插头🔌或扳手🔧的图标)。点击它。
- 在弹出的列表中,勾选你刚刚添加的
fetch
服务器。 - 选择一个支持MCP(或称为Function Calling/Tool Use)的模型。在Cherry Studio中,这些模型旁边通常会有一个扳手 🔧 标志。注意,不是所有模型都支持调用工具,你需要选择支持该功能的模型。
- 现在,你可以开始对话了!尝试让AI去获取一个网页的内容。
惊喜发现: 经过原作者测试,即使是像硅基流动(SiliconFlow)提供的免费Qwen 2.5-7B-Instruct这样的小参数模型,也能成功调用fetch
工具并完成网页内容的抓取和总结!这大大降低了体验MCP功能的门槛。
实战演练二:配置filesystem
,让AI成为你的“文件管家”
学会了添加fetch
,是不是感觉MCP也没那么神秘了?现在,咱们“举一反三”,来添加一个更强大的工具——filesystem
,让AI能够直接操作你电脑上的文件和文件夹!
filesystem
工具能做什么?
- 读写文件:读取文本文件内容,或者把AI生成的内容(比如诗歌、代码、报告)写入新文件或覆盖旧文件。
- 管理目录:创建新的文件夹,查看文件夹里有哪些文件,删除不需要的文件夹,移动文件夹位置。
- 模式搜索:使用通配符(比如
*.txt
,report_*.docx
)快速查找符合特定命名规则的文件。 - 获取元数据:查看文件的大小、创建日期、修改日期等详细信息。
- 访问控制:这是非常重要的安全功能!你可以通过配置文件(或在Cherry Studio的参数里设置)来限制
filesystem
工具只能访问你明确允许的目录,防止AI误操作或访问敏感区域。
配置方法详解:
- 同样地,在Cherry Studio的“设置” -> “MCP 服务器”中,点击“添加服务器”。
- 这次,我们配置
filesystem
服务器:- 名称 (Name): 比如叫
filesystem
。 - 类型 (Type): 依然选择
STDIO
,因为它需要操作本地文件。 - 查找服务器包名: 在Cherry Studio的添加界面,通常会有一个搜索或浏览功能来查找公开的MCP服务器包。尝试搜索
@modelcontextprotocol/server-filesystem
。如果搜索不到,你可能需要手动填写命令和参数,这通常可以在filesystem
的官方GitHub仓库找到。假设它也使用uvx
,那么:- 命令 (Command): 可能还是
uvx
。 - 参数 (Args): 可能是
@modelcontextprotocol/server-filesystem
。
- 命令 (Command): 可能还是
- 关键参数:指定可访问目录:这是
filesystem
特有的配置。在“参数”区域下方,通常会有额外的配置项。你需要在这里添加一个参数,指定你允许AI操作的文件夹路径。为了安全起见,强烈建议只指定一个你专门用于测试的、非系统关键的文件夹。例如,如果你想让AI操作你的桌面,并且你的桌面路径是C:\Users\YourUsername\Desktop
,你可能需要添加类似--allow C:\Users\YourUsername\Desktop
这样的参数(具体格式请参考filesystem
的文档或Cherry Studio的提示)。请务必谨慎设置此项!
(这里是示意图位置,实际应替换为真实的截图)
- 名称 (Name): 比如叫
使用方法:指挥AI整理文件
- 同样地,在对话界面启用
filesystem
服务器,并选择支持MCP的模型。 - 现在,你可以尝试用自然语言指挥AI操作文件了。
再次提醒:
- 操作本地文件有风险,请务必谨慎设置允许访问的目录。
- AI在理解和执行文件操作指令时,有时可能会出错或产生“幻觉”(比如理解错路径、文件名或操作)。你可能需要多次尝试、调整你的指令(Prompt),使其更清晰、更规范,才能达到理想的效果。
- 好消息是,根据原作者测试,即便是免费的7B模型,也能完成一些简单的文件操作!
彩蛋与拓展:当多个MCP协同工作…
想象一下,如果AI不仅能上网查资料(fetch
),还能读写本地文件(filesystem
),甚至还能调用Excel的API来处理表格数据… 这将是怎样一种强大的工作流?
虽然详细配置和使用多个MCP协同工作超出了本入门教程的范围,但这正是MCP协议的魅力所在——它允许你组合不同的工具,构建出极其强大的、能够完成复杂任务的AI Agent。比如,让AI上网搜集某个主题的数据,整理成本地Markdown文件,再读取这个文件,生成一份Excel报告。这一切,在MCP的世界里皆有可能!
探索更多MCP资源:打开新世界的大门
fetch
和filesystem
只是冰山一角。MCP的生态正在蓬勃发展,已经有许多开发者贡献了各种各样有趣的MCP服务器。想知道还有哪些“外挂”可以给你的AI装上吗?这里有几个发现和探索公开MCP服务器的好地方:
- Sminthery: https://sminthery.com/
- Pulse mcp: https://www.pulsemcp.com/
- Awesome mcp servers: https://mcpservers.org/
- mcp.so: https://mcp.so/
- Galma.ai: https://glama.ai/mcp/servers
- Cursor.directory: https://cursor.directory/ (Cursor编辑器相关的MCP资源)
在这些网站上,你可能会找到控制Blender进行3D建模、控制Figma进行UI设计、控制浏览器进行自动化操作、连接数据库进行查询等等各种脑洞大开的MCP工具!
MCP的未来:不止于Cherry Studio
除了我们今天实战的Cherry Studio,还有越来越多的工具和平台开始拥抱MCP生态,例如:
- 一些第三方的Claude客户端
- 著名的AI编程编辑器Cursor
- 一些VS Code插件(如Cline)
你甚至可以在上面提到的MCP资源网站上找到更多支持MCP的客户端工具。
可以预见,MCP将成为未来AI应用的重要基础设施。当越来越多的软件和服务通过MCP协议接入大模型时,“动嘴”就能完成工作的场景将不再是科幻。想象一下,直接对AI说:“帮我把这份Word文档里的图表更新一下数据,然后发给团队成员。” 这一天,或许比我们想象的要来得更快!
如果你知道更多好用的MCP工具或服务器,或者有更好的使用心得,非常欢迎在评论区分享交流!
结语:给你的AI一双翅膀,让智能飞翔
MCP协议,就像我们为聪明但受限的大模型量身定做的一双翅膀,让它们得以挣脱数据的牢笼,飞向广阔的现实世界,感知、交互、行动。
而Cherry Studio这样友好的工具,则像一个精心设计的“停机坪”和“导航系统”,让我们这些普通用户也能轻松地为自己的AI“安装”上这双翅膀,体验前所未有的智能交互。
通过今天的实战,相信你已经对MCP有了初步的了解,并掌握了在Cherry Studio中配置和使用MCP服务的基本方法。这只是一个开始,MCP的世界充满了无限的可能性等待你去探索。
不要犹豫,现在就动手试试吧!去配置你的第一个MCP服务器,去感受那个更强大、更全能的AI助手带来的惊喜。如果你觉得这篇文章对你有帮助,请不吝点赞、收藏,并分享给更多对AI充满好奇的朋友们!
相关资源链接汇总:
- Fetch MCP Server GitHub: https://github.com/modelcontextprotocol/servers/tree/main/src/fetch
- Filesystem MCP Server GitHub: https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem
- Cherry Studio Docs (MCP部分): https://docs.cherry-ai.com/advanced-basic/mcp-1
- Model Context Protocol 官网: https://modelcontextprotocol.io/
免费无限畅玩 Midjourney AI 绘画!ChatTools 同时提供 GPT-4o、Claude 3.7 Sonnet 等多种先进大模型,快来体验吧!