【YOLO部署安卓】NVIDIA显卡驱动的安装与更新

NVIDIA显卡驱动的安装与更新


查看版本信息

方式一:未安装显卡驱动的电脑

①右键【此电脑-管理】

②点击【设备管理器-显示适配器-独立显卡名称-驱动程序】,查看【驱动程序版本】

方式二:已经安装了显卡驱动的电脑

①桌面右键,点击【NVIDIA控制面板】


②左下角点击【系统信息】,查看【驱动程序版本】

驱动下载


NVIDIA显卡驱动下载地址icon-default.png?t=N7T8https://www.nvidia.cn/Download/index.aspx?lang=cn

①选择显卡类型

②执行下载

执行安装

①安装位置,默认c盘即可

我的是:C:\NVIDIA\DisplayDriver\546.01\Win11_Win10-DCH_64\International

②安装步骤如下,最后重启电脑

驱动版本检查

①安装更新,且重启电脑完毕后,win+R组合键,打开cmd,输入以下命令,回车

nvidia-smi

②查看版本信息


教程完毕,遇到问题可以留言。
 

### 如何在NVIDIA GPU或Jetson系列板卡上部署YOLO算法 #### 准备工作环境 为了成功部署YOLO模型至NVIDIA硬件平台,需先确认开发环境中已安装CUDA工具包以及cuDNN库。对于特定版本的CUDA支持情况,在某些情况下可能需要调整CUDA版本以匹配所使用的YOLO实现版本和GPU驱动程序的要求[^2]。 #### 安装依赖项 确保目标机器上有Python解释器可用,并通过pip或其他方式安装必要的Python库,比如OpenCV用于图像处理操作;PyTorch或者TensorFlow作为深度学习框架支撑(取决于具体采用哪个框架下的YOLO变体)。另外还需要安装`torchvision`等辅助库以便于加载预训练权重文件并完成推理过程中的数据转换等工作。 #### 获取YOLO模型及其配置文件 下载官方发布的YOLOv5源码仓库或是其他社区维护的良好分支。按照项目文档说明获取对应的`.pt`(针对PyTorch版)或者其他格式的预训练参数文件。同时也要准备好相应的网络结构定义(.cfg),类别标签列表(.names)等相关资源文件。 #### 编译Darknet(如果适用) 如果是基于原始Darknet框架构建的应用,则还需编译该C++代码base。这一步骤通常涉及修改Makefile来指定正确的BLAS库路径以及其他优化选项,从而充分利用底层计算能力加速神经网络运算效率。 #### 转换模型格式 考虑到不同平台上可能存在兼容性差异,有时会将原生YOLO模型转成ONNX通用表示形式再导入到TRT运行时环境中执行高效推断任务。此过程中需要用到诸如`onnxruntime-gpu`这样的跨平台推理引擎接口来进行桥接适配作业。 #### 使用TensorRT进行优化 借助NVIDIA TensorRT SDK可显著提高YOLO模型在嵌入式设备上的实际表现力。通过对输入尺寸固定化、量化感知训练等方式减少内存占用量的同时加快前向传播速度。此外还可以利用INT8精度模式进一步降低功耗水平而不明显牺牲识别准确性。 ```bash # 假设已经处于darknet目录下 ./darknet detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights -ext_output file.jpg | tee result.txt ``` 上述命令展示了如何调用Darknet CLI工具对单张图片实施对象检测并将输出重定向保存起来供后续分析评估之用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值